
High-dimensional approximation for
large-scale applications

Cumulative habilitation thesis
for the attainment of the degree

Dr. habil.
at the Faculty of Science

of the
University of Basel

handed in by
Dr. rer. nat. Peter Zaspel

from
Siegburg, Germany

Basel 2019

Abstract
Numerical approximation of high-dimensional problems based on models like partial differential
equations (PDEs) is a key tool in research and development. High dimensionality in a given
application can be based on an underlying physical problem of high dimensionality or it can
be based on a high-dimensional parameter space being present in uncertainty quantification,
inverse problems, optimization and machine learning. The objective of this cumulative habili-
tation thesis is to focus on the latter case and to introduce advancements in high-dimensional
approximation for large-scale parametric applications, where a single instance of a problem is
very computationally expensive due to complex (coupled) model equations or very small, large
or complicated geometric extends. More specifically, the applications under consideration are

• Bayesian inference for a problem in medical imaging,

• second moment analysis for an elliptic PDE with random input and

• machine learning for solutions of quantum chemistry calculations.
Within these parametric applications, we have to numerically solve the underlying non-

parametric problem (e.g. a PDE). That is, we need a numerical approximation scheme for a
large-scale application problem. Usually, the design and implementation of such schemes is a
strong challenge by itself. Therefore, one key requirement of all high-dimensional approxima-
tion methods in this thesis is to reuse existing numerical software. To this end, all methods
will either use solution snapshots or they will be applied within a given numerical software
immediately after discretization.

Due to the high dimensionality of the parameter space, standard approximation techniques
(e.g. tensor-product interpolation) that use snapshots will be hit by the curse of dimensionality,
i.e. an exponential growth of the number of expensive problem instances to be solved for
growing parameter dimension d. While solving a single large-scale problem is computationally
expensive, solving many large-scale problems, seems to be barely tractable. Therefore, high-
dimensional approximation techniques have to be developed and applied that reuse existing
numerical software and weaken or break the curse of dimensionality wrt. the parameter space.

The high-dimensional approximation techniques introduced or applied in this thesis include
but are not limited to

• Monte-Carlo-type techniques for the solution of the Bayesian inference problem,

• an algebraically sparse grid combination technique for the second moment analysis,

• a sparse grid combination technique for multi-fidelity kernel ridge regression in the quan-
tum chemistry application and

• hierarchical matrices for the approximation of Vandermonde-type matrices from linear
systems of equations in kernel-based approximation.

Contents

1 Introduction 1
1.1 Background . 1
1.2 High-dimensional problems in practice . 6
1.3 Function approximation . 10
1.4 Suitable approximation spaces . 13
1.5 Hierarchical approximation . 18
1.6 Sparse tensor-product approximation . 22
1.7 Low-rank approximation . 26
1.8 Overview of achieved results . 30

I Contributions in context of uncertainty quantification 37

2 Ensemble Kalman filters for reliability estimation in perfusion inference 39
2.1 Introduction . 39
2.2 Modeling radiological imaging and perfusion extraction 41
2.3 Numerical approach by sequential data assimilation 43
2.4 Numerical results . 49
2.5 Summary . 59

3 Subspace correction methods in algebraic multi-level frames 63
3.1 Introduction . 63
3.2 Related work . 64
3.3 Multi-level frame systems and their iterative solution 65
3.4 Algebraic multi-level frames . 70
3.5 Numerical results . 73
3.6 Conclusions . 76

4 On the algebraic construction of sparse multilevel approximations of elliptic tensor
product problems 81
4.1 Introduction . 81
4.2 Algebraic multilevel constructions . 82
4.3 Sparse algebraic tensor product approach . 87
4.4 Implementation . 92
4.5 Numerical results . 94
4.6 Conclusions . 98

i

ii Contents

II Contributions in context of machine learning 103

5 Boosting quantum machine learning models with multi-level combination tech-
nique: Pople diagrams revisited 105
5.1 Introduction . 105
5.2 Computational Details . 106
5.3 Theory . 107
5.4 Results and discussion . 115
5.5 Conclusions . 122
5.6 Appendix: Derivation of the combination technique for quantum machine learning123

6 Algorithmic patterns for H matrices on many-core processors 135
6.1 Introduction . 135
6.2 H matrix background . 138
6.3 Programming model for many-core parallel algorithms 142
6.4 Many-core parallel algorithmic patterns for H matrices 143
6.5 Results . 153
6.6 Summary . 164
6.7 Appendix: Batched bounding box computation 164

7 A scalable H-matrix approach for the solution of boundary integral equations on
multi-GPU clusters 171
7.1 Introduction . 171
7.2 Mathematical background . 173
7.3 Scalable parallel H-matrix approach for BEM 177
7.4 Numerical results . 182
7.5 Conclusions . 192

1 Introduction

1.1 Background

Numerical approximation of high-dimensional problems based on models like partial differential
equations (PDEs) is a key tool in research and development. High dimensionality in a given
application can be based on an underlying physical problem of high dimensionality (e.g. present
in complex plasma physics models) or it can be based on a high-dimensional parameter space
appearing in uncertainty quantification, inverse problems, optimization and machine learning.
The objective of this thesis is to focus on the latter case and to introduce progress in high-
dimensional approximation for large-scale parametric applications, where a single instance of a
problem is very computationally expensive due to complex (coupled) model equations or very
small, large or complicated geometric extends.

For a given parameter space Γ Ă Rd with d being large and D Ă RD a physical space(-time)
domain, the objective in parametric problems is to find a solution u : Γ ˆ D̄ Ñ Rr such that

Lrasu “f rbs in Γ ˆ D̄ (1.1)

holds with L being a possibly non-linear operator. a, b : Γ ˆ D̄ Ñ Rs might characterize
coefficients in L and a parametrization of the right-hand side. For simplicity, we skip appro-
priate boundary and initial conditions for now. In many applications, the objective is further
to extract a specific quantity of interest π as a function of the solution u. Such quantities of
interests might be linear functionals or point evaluations. Figure 1.1 gives a generic schematic
overview of this general parametric problem, assuming that (1.1) is a PDE.

Figure 1.1: Schematic overview of a high-dimensional parametric PDE.

1.1.1 Application scenarios

(Forward) uncertainty quantification. A specific instance of the above problem is (forward)
uncertainty quantification or statistical moment estimation, in which we solve random PDEs,
i.e. PDEs with random coefficients, random boundary conditions, random domains or random
loading, and approximate statistical moments of a random solution for some given random
input. That is, after introducing a truncated Karhunen-Loève expansion for the random input
variables / fields, cf. [Loè78], we aim at solving (1.1) ρ-almost surely for a given probability

1

2 1 Introduction

space pΓ, B, ρ dyq with Γ Ă Rd a parameter space with a dimensionality depending on the
number of terms used in the Karhunen-Loève expansion, ρ : Γ Ñ R` a probability density
function and B a Borel σ-algebra.

In uncertainty quantification, the special interest is to compute statistical quantities, such
as the mean

E rus pxq :“
ż

Γ
upy, xqρpyqdy

or the two-point correlation (e.g. for a scalar u)

Cor rus px, x1q :“
ż

Γ
upx, yqupx1, yqρpyqdy (1.2)

of the solution field. Alternatively, these quantities can be computed for a given quantity of
interest of the random solution, e.g. E rπpuqs. Figure 1.2 summarizes this type of problem.

In this thesis, we consider the computation of (1.2) for an elliptic PDE with random loading.

Figure 1.2: Abstract view of a statistical moment analysis.

(Backward) uncertainty quantification. In (backward) uncertainty quantification or (Baye-
sian) inference [Stu10, RC15], (the distribution of) the parameter fields a or b are deduced for a
given (random) PDE, measurements tπ1, π2, . . . , πM u and an observation operator H that maps
the solution of the (random) PDE to observation space, i.e. the space of the measurements.
Figure 1.3 visualizes this type of problem. Obviously, the solution of a parametrized PDE as
in equation (1.1) is one part of this important application scenario.

In this thesis, we will consider a medical imaging task as Bayesian inference problem.

Figure 1.3: Abstract view of a Bayesian inference problem.

Machine learning. The third high-dimensional application discussed in this thesis is machine
learning for the solutions of computational models / simulations. In this field of growing
importance, results of very expensive simulations for large classes of input parameters shall be
predicted using a machine learning model that was trained with evaluations of a computational

1.1 Background 3

Figure 1.4: Abstract view of a machine learning regression problem.

model for different input parameters. As we will see, cf. Figure 1.4 and Remark 1.5, this task
can also be interpreted as a special case of solving a parametric problem.

In this thesis, we will discuss this topic for the important application of quantum chemistry,
where we predict chemical properties of unseen molecules based on numerical calculations for
other molecules.

1.1.2 Challenges in approximation of high-dimensional large-scale applications
All beforehand mentioned application scenarios require to solve (1.1). In order to find an
approximate solution of (1.1), we will certainly have to numerically solve the underlying non-
parametric problem. That is, we need a numerical approximation scheme for a large-scale
application problem. Usually, the design and implementation of such schemes, is a strong chal-
lenge by itself. Therefore, one key requirement of all high-dimensional approximation methods
will be to reuse existing numerical software. To this end, all methods will either use solution
snapshots upyi, ¨q for some inputs yi and derived parameters ai :“ apyi, ¨q, bi :“ bpyi, ¨q, or
they will be applied within a given numerical software immediately after discretization.

Figure 1.5: Generalized view of the snapshot-based approximation of a parametric problem.

The calculation of approximations based on solution snapshots is visualized in Figure 1.5.
Depending on the scenario and the applied methods, (1) a set of problem instances is derived
from a usually high-dimensional parameter space, (2) the underlying PDE (or other type of
problem) is solved for each instance, (3) a parametrized solution (response surface) is recon-
structed by high-dimensional approximation in the parameter space, (4) a derived quantity
is computed and — maybe — (5) the derived quantity is used to start the process from the
beginning. While solving a single large-scale problem is computationally expensive, solving
an application scenario as in Figure 1.5, with many large-scale problems, seems to be barely
tractable.

4 1 Introduction

The given situation becomes even more difficult knowing that standard discretizations in the
parameter space Γ will result in the curse of dimensionality, i.e. an exponential growth of the
number of expensive problem instances to be solved for growing parameter dimension d.

Therefore, high-dimensional approximation techniques have to be applied that reuse exist-
ing numerical software and weaken or break the curse of dimensionality with respect to the
parameter space.

1.1.3 Objectives of this thesis
In high-dimensional approximation, several strategies are available to reduce the computational
work in presence of high dimensionality. The general objective of this thesis is the adaptation,
improvement and new development of such strategies for large-scale applications. The specific
contributions of this thesis are discussed along the following overview of such strategies.

Function approximation. One approach to approximate (1.1) is given by function approxi-
mation for the output quantity of interest. In sampling by e.g. Monte Carlo or quasi-Monte
Carlo methods, output quantities of interest that are based on an integral can be approximated.
Monte Carlo methods are dimension-robust, but have low algebraic convergence rates. More
general output quantities of interest can be approximated by interpolation / collocation with
with e.g. (sparse) tensor-products of univariate polynomials, i.e. sparse grid approximation
[BG04], or scattered data approximation / approximation in reproducing kernel Hilbert spaces
(RKHS) [Wen04]. Such techniques have, compared to classical Monte Carlo methods, higher
requirements on the parametric regularity of the solutions u. However, they can achieve much
better algebraic or even exponential convergence rates. Other techniques in this field are, e.g.,
regression or best N -term approximation.

Note that all discussed techniques use solution snapshots. Therefore they are of high interest
in context of large-scale applications.

In this thesis, we will apply Monte-Carlo type techniques for the solution of the inference
problem in medical imaging. Moreover, function approximation in reproducing kernel Hilbert
spaces will be made much cheaper from a computational point of view both in terms of the
cost of the individual snapshots by the introduction of the sparse grid combination technique
(discussed later) to kernel-based approximation and in terms of the actual cost to solve the
approximation problem by a change of methodology in the hierarchical matrix approach (dis-
cussed later).

Hierarchical approximation. In multi-level approximation techniques, several levels of dis-
cretizations of a given problem are considered. These multiple levels can either be used to
introduce space- / time-adaptivity in the discretization, or they can be used in context of
multigrid methods to introduce linear solvers with optimality properties for discretized prob-
lems. A very appealing extension of this approach are so-called multi-level frame discretizations
[Dah97, HSS08]. This approach, going back to the BPX preconditioner [BPX90], combines ba-
sis functions from several levels into one large generating system [Gri94] or frame, giving a
way to further generalize the multi-level idea. Space- / time-adaptivity and optimal linear
solvers give a means to solve high-dimensional problems at less work and at lower complexity.
Moreover, multi-level (frame) discretizations are used in specific high-dimensional multi-level

1.1 Background 5

approximations that will be discussed in the next paragraph. One difficulty of standard geomet-
ric multi-level (frame) approximations is their application within the geometric discretization
of a given, e.g., PDE. Therefore, they are not easily applicable to existing numerical software
for large-scale applications.

To overcome this, the algebraic construction of multi-level frames is introduced in this thesis.
It is purely based on the linear system constructed after the discretization of e.g. an elliptic
PDE. Hence, it can be easily applied to existing numerical software and is, among other prop-
erties, independent of potentially complex geometries. The new algebraic construction is based
on techniques known from algebraic multigrid [BMR82]. One application of this new approach
will be optimal-complexity linear solvers. Also, based on this work, a new algebraic high-
dimensional approximation technique is constructed.

Sparse tensor-product approximation. This type of techniques combines ideas from high-
dimensional function approximation with hierarchical approximation techniques. In the multi-
level (quasi-)Monte Carlo approach [Hei01, Gil15], strong work reductions are achieved by
efficiently combining solution samples on different discretization levels. A related technique is
the sparse grid combination technique [GSZ92] that allows to build sparse grid approximations
using solutions discretized on anisotropic regular grids. The idea of the sparse grid combination
technique can be further generalized to a multi-level / multi-fidelity approximation technique
of problems with multi-level hierarchies in different spaces, e.g. parametric spaces, time space,
physical domain space [RG18]. Here, it provides a combination methodology that achieves
an optimal balancing of costs of combined solutions up`q being discretized on different levels
per underlying space. From a multi-level Monte Carlo perspective, this general idea is often
known as multi-index approximation [HANTT16]. The sparse grid combination technique and
multi-index approximations use multi-level sampling or multi-level collocation-type function
approximation in parametric space, while requiring multi-level discretizations in e.g. physical
space.

In this thesis, algebraic multi-level frames are used to construct an algebraic sparse grid
combination technique. It allows to build a sparse grid combination technique approximation
by only using knowledge from a linear system that is assembled from a given numerical soft-
ware. This approach is specifically applied for the approximate solution of large-scale complex-
geometry elliptic tensor product problems. Such problems show up in the second moment
analysis, i.e. the covariance estimation, for elliptic random PDEs. Due to the new algebraic
approach, this analysis becomes feasible for existing numerical software and for problems with
complex geometries.

An additional contribution of this thesis is the introduction of the generalized sparse grid
combination / multi-index approach to kernel-based approximation or kernel ridge regression
[VSL`15]. That is, this approach is introduced to the field of regression in machine learn-
ing. The specific machine learning application is the prediction of atomization energies for
molecules based on trained quantum chemistry calculations. Within this approach, multi-level
hierarchies are introduced in the learning part (i.e. the number of molecules) and in the quan-
tum chemistry part (i.e. the quantum chemistry calculation model and the basis set size used in
the calculations). For a fixed target prediction error, a strong reduction in required expensive
training samples is achieved.

6 1 Introduction

Low-rank approximation for discrete high-dimensional data. In this field, one considers the
approximation of discrete data that is either stored in matrices or in higher-order tensors.
High dimensionality is present either due to a functional dependence of the discrete data on a
higher-dimensional input or by the high dimensionality / order of the tensor. A typical exam-
ple for matrices with entries depending on high-dimensional inputs are interpolation matrices
from high-dimensional scattered data interpolation or approximation. Higher-order tensors
can be used to describe solutions to parametric problems in a discrete sense. In all the be-
forehand mentioned situations, efficient data structures become very important. Tensors have
to be represented in appropriate tensor formats [Hac12], while scattered data is structured
in e.g. kD-trees, quad trees or by space filling curves. Given these well-structured data rep-
resentations, low-rank approximation techniques such as adaptive cross approximation (ACA)
[Beb00], singular value decomposition (SVD) or the pivoted Cholesky factorization [HPS12] can
be used to efficiently reduce the required computational cost for computations on the discrete
data, while keeping a prescribed fixed approximation tolerance.

In this thesis, advancements on the efficient approximation of e.g. interpolation matrices
from interpolation in reproducing kernel Hilbert spaces will be made. More specifically, space
filling curves are introduced to the ACA-based hierarchical (H) matrix approach [Hac15] that
allows to efficiently approximate matrices with entries corresponding to evaluations of kernel
functions, which are smooth away from the diagonal. This change in the underlying data
structure will result in a restructuring of the hierarchical matrix algorithm that allows this
method to be parallelized much better. Thereby, kernel-based function approximation will
become pre-asymptotically much faster.

1.1.4 Overview

The remainder of this introduction section is structured as follows. In Section 1.2, we start by
briefly introducing the three major large-scale applications present in this thesis. Afterwards, in
Sections 1.3 to 1.7, the discussed high-dimensional approximation techniques will be concisely
introduced from a mathematical point of view. Hints to the new contributions of this thesis
will be pointed out. Finally, Section 1.8 gives a structured overview (with statement on the
author’s own contribution for non single-authored works) over each article and preprint that
is the basis of this cummulative habilitation.

1.2 High-dimensional problems in practice

1.2.1 Perfusion estimation in dynamic contrast-enhanced imaging

The first application in this thesis is in the field of (backward) uncertainty quantification,
that is, inference in medical imaging. The aim is to infer a time-stationary perfusion (blood
flow) information p P RNvoxel , cf. Figure 1.6(a), given the (assumed to be exactly known)
inflow concentration cart of a contrast agent and an “observation matrix” C of time-dependent
volumetric images of a patient’s tissue. Formally, the blood perfusion in a given voxel j can be
evaluated as quantity of interest of a so-called response function kj as

pj :“ ppkjq :“ ρj
´1kjp0q .

1.2 High-dimensional problems in practice 7

(a) approximated perfusion p (b) approx. probability of low perfusion (p ă 10)

Figure 1.6: In the inference application, perfusion information (i.e. blood flow rates) are esti-
mated from noisy medical imaging data in a Bayesian framework.

The underlying deterministic inference problem reads as follows: For given total measurement
time T P R, arterial inflow cart : r0, T s Ñ Rě0, measurement / observation times tobs

1 ă tobs
2 ă

. . . ă tobs
Nobs

and observation matrix C, composed from vectors ci P RNvoxel , i P t1, . . . , Nobsu, we
aim at computing a vector k “ pk1, . . . , kNvoxel

qT of response functions kj : r0, T s Ñ R and the
derived quantity of interest p “ pp1, . . . , pNvoxel

qJ with pj “ kjp0q{ρj such that

cj,i «

ż T

0
cartpτqkjptobs

i ´ τqdτ ` ej,ipcart, kq , j P t1, . . . , Nvoxelu, i P t1, . . . , Nobsu . (1.3)

This problem is under-determined with the given requirements. Furthermore, we have not
specified the nature of the error term ej,i. This is why we used the notion “«”.

The main contribution of this thesis to this problem is to reformulate it as a Bayesian se-
quential data assimilation task, which is solved on synthetic data by sampling-based methods,
i.e. the ensemble-based Kalman filter. The Bayesian view allows to compute additional prob-
abilistic reliability information, cf. Figure 1.6(b), which might be crucial for diagnosis, in the
long run.

1.2.2 Second moment analysis for elliptic problems

The approximation of the mean of a partial differential equation has been studied for many
problems. However, the approximation of the statistical quantity two-point correlation, cf. (1.2),
is usually avoided, since it involves to approximate a bivariate function in the full physical space
D. That is, a problem in 2D dimensions has to be solved. Even for small dimensions D “ 2, 3,
this can become very computationally expensive.

Let us exemplify this for an elliptic problem with random loading. We consider a given
deterministic matrix-valued coefficient function A : D Ñ RDˆD and aim at finding u : ΓˆD̄ Ñ

8 1 Introduction

ˆ

Figure 1.7: In the second moment analysis example, we consider the sparse black-box approx-
imation of the two-point correlation, e.g. on spanner geometries.

R such that it holds almost surely for all y P Γ

´divxpA∇xupyqq “ fpyq in D ,

upyq “ 0 on BD .

Under appropriate assumptions, it is known (e.g. from [ST03]) that the two-point correlation
of u considered as function Cor rus : D̄ ˆ D̄ Ñ R can be computed by solving the deterministic
boundary value problem

pdivx b divx1q ppAx b Ax1q p∇x b ∇x1q Cor rusq “ Cor rf s in D ˆ D ,

Cor rus “ 0 on BpD ˆ Dq .

This is an elliptic boundary value problem on the 2D-dimensional domain D̄ ˆ D̄. If we
introduce a finite-dimensional approximation for real-valued functions on D with a basis of
size ND, representing the solution Cor rus will already require N2

D degrees of freedom. Then,
even with multigrid, we need OpN2

Dq operations to get an approximate solution. However,
following the lines of [ST03, HPS13], it is possible to introduce a sparse approximation for
Cor rus leading to an approximation method with almost linear complexity in ND, up to poly-
logarithms. Nevertheless, the sparse construction proposed in [ST03, HPS13] usually requires
to have a geometrical multi-level discretization of ND at hand. This makes it almost impossible
to apply this approach in a black-box fashion.

For the sake of simplicity, we restrict ourselves to the case of A :“ I, i.e. the identity matrix,
and aim at solving the model problem

pdivx b divx1q pp∇x b ∇x1q Uq “ F in D ˆ D ,

U “ 0 on BpD ˆ Dq ,

with the load function F : D̄ ˆ D̄ Ñ R and the solution U : D̄ ˆ D̄ Ñ R. For this problem,
we discuss a new algebraic multi-level construction that shows the same preferable asymptotic
computational complexity as the sparse approaches in [ST03, HPS13]. However, this approach
only relies on information given by the stiffness matrix and the mass matrix given by a uni-
variate elliptic boundary value problem on D, in order to construct a multi-level hierarchy for

1.2 High-dimensional problems in practice 9

D ˆ D. This allows to introduce this sparse approach to a much broader class of problems,
such as problems on complex geometries, cf. Figure 1.7, in a black-box fashion.

1.2.3 Atomization energy estimation in quantum chemistry

In computational quantum chemistry, which we discuss following the lines of [Ham09], or more
specifically in electronic structure calculations, one is interested in the approximate solution of
the stationary Schrödinger equation

HMΨ “ EΨ . (1.4)

This equation is an eigenvalue problem in which pE, Ψq is a pair of eigenvalue E and eigenfunc-
tion Ψ for the Hamilton operator HM. The Hamilton operator, roughly speaking, encodes the
properties of a molecule M, where we use atomic units for all remaining quantities. A molecule
M consists of Nel electrons Ep and Nnuc nuclei N q. The pth electron is characterized by its
position xp P R3 while the qth nucleus is characterized by the triple prq, mq, zqq P R3 ˆ R ˆ R
with position, mass and atomic number. The Hamilton operator of the stationary Schrödinger
equation is given by

HM :“ ´
1
2

Nel
ÿ

p“1
∆xp ´

Nel
ÿ

p“1

Nnuc
ÿ

q“1
zq

1
}xp ´ rq}2

`

Nel
ÿ

p“1

Nel
ÿ

p1ąp

1
}xp ´ xp1}2

`

Nnuc
ÿ

q“1

Nnuc
ÿ

q1ąq

zqzq1

1
}rq ´ rq1}2

´
1
2

Nnuc
ÿ

q“1

1
2mq

∆rq .

(1.5)

Here, ∆xp and ∆rp are the Laplace operators with respect to the named coordinate directions.
The terms of the operator describe the kinetic energy of the electrons, the potential energy of
the interactions between electrons and nuclei, the potential energy of the repulsion between
the electrons, the potential energy of the repulsion between the nuclei and the kinetic energy
of the nuclei (in this order). The smallest eigenvalue Emin of HM is the ground state energy of
molecule M, which we denote as EminpMq.

We aim at approximating the parametric Schrödinger equation (1.4) in which the parameter
space Γ is a subset of all possible molecules and where the quantity of interest π is the so-called
atomization energy, cf. Figure 1.8, of a given molecule M. The atomization energy of molecule
M describes the energy that is necessary to cut all atom bonds in the molecule. This means, it
is, up to change of sign, the difference between the ground state energy EminpMq for molecule
M and the sum

řNnuc
q“1 EminpN qq over the ground state energies of each individual nucleus.

Practical approaches to approximately compute the ground state energy require further
simplifications of the Hamilton operator HM. One usually solves the simplified electronic
Schrödinger equation based on the Born-Oppenheimer approximation. Then, there are many
different methods, such as Hartree-Fock, Møller-Plesset 2 and coupled cluster, which provide
approximate solutions to the ground state energy. As usually, better approximations lead to a
much higher computational cost. Moreover, each method needs a basis set. Roughly speaking,
a larger basis set size leads to a better approximation with an upper bound of the achievable
accuracy imposed by the method in the basis set size limit. The ultimate goal is to approximate

10 1 Introduction

Figure 1.8: In the machine learning application, we approximate atomization energies of
molecules, i.e. the energy necessary to break a molecule into its (unbound) atoms.

the atomization energy of a molecule with chemical accuracy, that is, at an accuracy which
corresponds to the best possible measurement accuracy in chemical experiments. However,
such calculations become computationally very expensive.

The main contribution of this thesis, in the above context, is the approximation of the map-
ping between molecule and atomization energy by a kernel ridge regression model at chemical
accuracy. To overcome the exceptional computational requirement for this application, a new
multi-fidelity kernel ridge regression approach is introduced that is based on the sparse grid
combination technique. It strongly reduces the amount of very expensive training sample
calculations by adding many cheap training samples.

1.3 Function approximation
We observe that we can rewrite our general problem (1.1) such that the solution u is a Banach
space-valued function

u : Γ Ñ V

with elements v P V of the form v : D̄ Ñ Rr. That is, an approximate solution of (1.1) can be
interpreted as the approximation of a Banach space valued (high-dimensional) function.

Recall, that we are often interested to compute real-valued quantities of interest πpuq,
i.e. real-valued numbers that are even no longer dependent on the physical space. There-
fore, we will restrict ourselves to the discussion of high-dimensional function approximation for
real-valued functions u : Γ Ñ R.

In the following, we discuss a series of different approximation approaches to find for functions
u : Γ Ñ R, which are elements of some function space F to be specified later, approximations
AV u in some finite-dimensional subspace V Ă F . We call AV u an approximation for u, if it
holds

AV u « u .

Note that the exact definition of approximation will depend on the type of approximation that
we will use. We will replace the general operator AV by specific versions, e.g. BV for best
approximation, IV for interpolation, etc.

1.3 Function approximation 11

Remark 1.1 (Sampling-based techniques). In this overview, we stick to the discussion of high-
dimensional function approximation for general output quantities of interest. Sampling-based
Monte-Carlo type methods, which can only be applied in context of integral-type quantities of
interest, are, e.g., discussed in [Caf98].

Relation to achieved results

A Monte-Carlo type method is used in Chapter 2 in order to approximate a Kalman
filter for Bayesian inference in a medical imaging application.

1.3.1 Best approximation

Let F be a Hilbert space of functions of type u : Γ Ñ R with scalar product x¨, ¨y and the
induced canonical norm } ¨ }. We consider V Ă F to be a finite-dimensional linear subspace of
F . In (linear) best approximation for a function u P F , we aim at finding a function BV u P V
such that it holds

}u ´ BV u} “ inf
vPV

}u ´ v} .

The existence and uniqueness of such an infimum is guaranteed, since V is a finite-dimensional
linear subspace of F [HH94]. We further know [Ran17] that the above statement on the best
approximation is equivalent to

xu ´ BV u, φy “ 0 @φ P V . (1.6)

Since V is finite-dimensional, we can now choose a (finite) basis, i.e. V :“ spantφ1, . . . , φN u,
and write

pBV uqpyq :“
N
ÿ

j“1
αjφjpyq .

With (1.6), we conclude

xu ´ BV u, φy “ xu ´

N
ÿ

j“1
αjφjpyq, φy “ xu, φy ´

N
ÿ

j“1
αjxφjpyq, φy “ 0 @φ P V .

By inserting φ :“ φj for j P t1, . . . , Nu, we end up with the system of linear equations

N
ÿ

j“1
xφj , φiyαj “ xu, φiy @i P t1, . . . , Nu ,

which allows to compute the coefficients αj and hence BV u.

Example 1.1 (L2 projection). For F “ L2pΓq, i.e. the Lebesgue space of all square inte-
grable functions u : Γ Ñ R, equipped with the standard L2 norm and scalar product, the best
approximation BV u is the L2 projection PV u of u onto V . 4

12 1 Introduction

1.3.2 Interpolation

In interpolation, we again consider to approximate a function u P F by a function from an N -
dimensional subspace V . However, we additionally require u to be point-evaluable. Moreover,
we introduce N abscissas

X :“ ty1, . . . , yN u .

Then, we introduce the interpolant IV,Xu as the function that fulfills for each abscissa yi the
interpolation condition

pIV,Xuqpyiq “ upyiq .

Once again, we use a finite basis tφ1, . . . , φN u for V and make the ansatz pIV,Xuqpyq :“
řN

j“1 αjφjpyq to end up with a system of linear equations of the form

N
ÿ

j“1
αjφjpyiq “ upyiq @i P t1, . . . , Nu ,

which allows to compute the coefficients αj and thereby IV,Xu.

An alternative way to formulate interpolation is given by the use of a Lagrange basis tLiu
N
i“1

for V such that
Lipyjq “

"

1, i “ j ,
0, i ‰ j .

For given data tpyi, upyiqquN
i“1, the interpolant becomes

pIV,Xuqpyq “

N
ÿ

i“1
upyiqLipyq .

To determine the Lagrange basis, we express each Li in terms of the finite-dimensional basis
according to Lipyq :“

řN
j“1 α

piq
j φjpyq. Then, we can compute the α

piq
j by solving

N
ÿ

j“1
α

piq
j φjpyiq “ δi,j .

Remark 1.2 (Collocation for parametric problems). We can easily use function interpolation
by a Lagrange basis to solve parametric problems. In the context of parametric problems, this
approach is called collocation [BNT10].

Let us briefly recall (1.1), where we aim at solving

L rapy, xqs upy, xq “ f rbpy, xqs py, xq in Γ ˆ D̄ .

We then generate data tpyi, upyi, ¨qqu by solving N non-parametric problems

Lrapyi, xqsupyi, xq “ f rbpyi, xqspyi, xq in D̄ @i P t1, . . . , Nu .

1.4 Suitable approximation spaces 13

The approximate solution IV,Xu of the parametric problem finally becomes

pIV,Xuq py, xq :“
N
ÿ

i“1
upyi, xqLipyq .

1.3.3 Regression

In interpolation, we considered a situation, in which we have the same amount of data
tpyi, upyiqquN

i“1 as the dimensionality of the subspace V . We now consider the situation, in
which we have M data points with M ą N . In this case, we have to solve a regression prob-
lem. We here briefly discuss least squares approximation [HH94]. That is, we seek a function
RV u :“

řN
j“1 αjφjpyq with a coefficient vector α such that it holds

α :“ argmin
α1

M
ÿ

i“1

ˇ

ˇ

ˇ

ˇ

ˇ

upyiq ´

N
ÿ

j“1
α1

jφjpyiq

ˇ

ˇ

ˇ

ˇ

ˇ

2

.

By setting up the matrix A P RMˆN with entries ai,j :“ φjpyiq and the vector u with entries
ui :“ upyiq, we can compute the coefficients αj by solving the known to be unstable normal
equations

AJAα “ AJu .

1.4 Suitable approximation spaces

In the following, we give typical examples of approximation spaces V . We start with two
approximation spaces for univariate functions. These give examples for the generalization to
multivariate approximation spaces in terms of tensor-products of univariate approximation
spaces. Finally two multivariate approximation spaces are provided. We always move from
approximation spaces, where we can increase a number of points on a grid, i.e. h-refinement,
to approximation space, where we can increase the polynomial degree, i.e. p-refinement.

1.4.1 Univariate piecewise linear polynomials

We restrict ourselves to approximation spaces for functions on closed subsets of Γ Ă R. For
simplicity, we choose Γ “ r´1, 1s. Moreover, we need a set of points X` that define the intervals
on which the polynomials are given. We define these with respect to a level `. Typical choices
for X` with X` :“ tyiu

N`
i“1 are uniformly distributed points with

yi “ ´1 ` pi ´ 1q ¨ h`, h` “
2

N` ´ 1 , N` “ 2`´1 ` 1, ` ě 2 (1.7)

or Clenshaw-Curtis points with

yi “ ´ cos πpi ´ 1q

N` ´ 1 , N` “ 2`´1 ` 1, ` ě 2 . (1.8)

14 1 Introduction

Then, the piecewise linear polynomial approximation space PW N`
becomes

V “ PW N`
:“

u : Γ Ñ R
ˇ

ˇu P Cr´1, 1s, u|ryi,yi`1s is linear, i P t1, . . . , N` ´ 1u
(

. (1.9)

Remark 1.3. We could easily extend the above approximation space to piecewise polynomials
of higher degree or even to splines. However, since these spaces are not used throughout this
thesis, we skip their discussion.

1.4.2 Univariate polynomials

Another important univariate approximation space are univariate polynomials. For simplicity,
we again choose Γ “ r´1, 1s. Then, the finite-dimensional subspace V :“ PN of polynomials

V “ PN :“
#

u : Γ Ñ R

ˇ

ˇ

ˇ

ˇ

ˇ

upyq “

N
ÿ

j“0
ajyj

+

.

is often used for function approximation of smooth functions.

Example 1.2 (Interpolation by univariate polynomials). For smooth functions u : r´1, 1s Ñ R,
we use V :“ PN and introduce the set of abscissas

X :“ ty0, y1, . . . , yN u Ă r´1, 1s .

The interpolant IPN ,X with respect to the monomial basis t1, y, y2, . . . , yN u and coefficients
tαiu

N
i“0 can be computed by solving the system of linear equations

APN ,Xα “ u ,

where ui :“ upyiq and

APN ,X :“

¨

˚

˝

1 y0 y2
0 ¨ ¨ ¨ yN

0
...

...
...

1 yN y2
N ¨ ¨ ¨ yN

N

˛

‹

‚

.

Note, however, that one would usually avoid the explicit solution of this system of linear equa-
tions for computational cost reasons. 4

1.4.3 Tensor products of univariate approximation spaces

We use a tensor product construction to extend the above univariate approximation spaces
to multivariate approximation spaces. To consider approximation of functions in a full d-
dimensional space Γ :“ Γp1q ˆ ¨ ¨ ¨ ˆ Γpdq, we take a sequence

V p1q, V p2q, . . . , V pdq

of d univariate finite-dimensional approximation spaces with

dim V p1q “ . . . “ dim V pdq “ N .

1.4 Suitable approximation spaces 15

The resulting tensor product approximation space TN becomes

V “ TN :“ V p1q b V p2q b ¨ ¨ ¨ b V pdq .

If we have for each space V piq a basis
!

φ
piq
1 , . . . , φ

piq
N

)

, TN is given by

TN :“ span
#

d
ź

i“1
φ

piq
ji

ˇ

ˇ

ˇ

ˇ

ˇ

pj1, . . . , jdq P t1, . . . , Nud

+

.

The general tensor product approximation operator ATN
is then formally given by

ATN
:“ AV p1q b ¨ ¨ ¨ b AV pdq .

Example 1.3 (Interpolation by tensor products of piecewise linear functions). A d-variate
Lagrange interpolation formula on Γ “ r´1, 1sd can easily be derived from the tensor-product
of d univariate interpolation formulas

pITN`,X
uqpyq :“

ˆ

Ip1q

P W N`
,X

p1q

`

b Ip2q

P W N`
,X

p2q

`

b ¨ ¨ ¨ b Ipdq

P W N`
,X

pdq

`

˙

pyq

“

N
ÿ̀

j1“1
¨ ¨ ¨

N
ÿ̀

jd“1
upyjq

´

L
p1q

j1
b ¨ ¨ ¨ b L

pdq

jd

¯

pyq ,

with
´

L
p1q

j1
b ¨ ¨ ¨ b L

pdq

jd

¯

pyq :“ L
p1q

j1

´

yp1q
¯

¨ . . . ¨ L
pdq

jd

´

ypdq
¯

.

The interpolation abscissas are

yj “

´

y
p1q

j1
, . . . , y

pdq

jd

¯

P X :“ X
p1q

` ˆ ¨ ¨ ¨ ˆ X
pdq

` ,

where j :“ pj1, . . . , jdq is a d-dimensional multi-index. Each individual y
piq
ji

is, e.g., given in
(1.7). The tensor product piecewise linear interpolation formally constructs interpolants from
functions evaluations on points

´

y
p1q

j1
, . . . , y

pdq

jd

¯

that are given on the grid X. It is obvious
that the number of required function evaluations, for fixed univariate resolution N`, scales
exponentially in the number of dimensions. This is the curse of dimensionality. 4

1.4.4 Piecewise linear polynomials on triangulations

Tensor product approximations are tied to an underlying space Γ that has tensor product struc-
ture. To handle more general parametric spaces Γ, we can approximate functions F Ă L2pΓq

by piece-wise polynomials on triangulations. That is, we assume to have for Γ a triangulation

T :“ tτ1, . . . , τM u .

16 1 Introduction

We can then introduce the finite dimensional subspace

V “ PT :“

u P CpΓq
ˇ

ˇ@τ P T` : u|τ is linear
(

,

i.e. piecewise linear polynomials on the triangulation.

Remark 1.4. This finite dimensional approximation space is the standard ansatz space for
finite element approximations. It is less often used for approximation in the parametric do-
main Γ. However approximation by piecewise polynomials is sometimes used in uncertainty
quantification under the notion of simplex stochastic collocation [WLB09].

Relation to achieved results

In Chapters 3 and 4, we discuss the solution of elliptic problems that are discretized
by piecewise linear polynomials on triangulations.

1.4.5 Reproducing kernel Hilbert spaces
In tensor product approximation, we are fixed to domains Γ of tensor product structure, while
piecewise polynomials on triangulations allow to do function approximation on more general
domains. However, still, approximations are connected to a spatial structure, i.e. a mesh. In
contrast, scattered data approximation can achieve a meshless finite-dimensional approxima-
tion of functions from a reproducing kernel Hilbert space. The underlying theory is discussed
following [Wen04].

A reproducing kernel k for a general Hilbert space F is a function k : Γ ˆ Γ Ñ R such that

1. kp¨, yq P F for all y P Γ,

2. fpyq “ pu, kp¨, yqqF for all u P F and all y P Γ.

F is called reproducing kernel Hilbert space (RKHS), if it has a reproducing kernel k : ΓˆΓ Ñ R.
A continuous kernel k : Γ ˆ Γ Ñ R is further positive semi-definite on Γ Ď Rd, if for
all N P N, all pairwise distinct X “ ty1, . . . , yN u Ď Γ, and all α P RN zt0u, we have
řN

j“1
řN

j1“1 αjαj1 kpyj , yj1q ě 0. It is called positive definite for the corresponding strict in-
equality.

In the following, we stick to radial kernels, i.e. kernel functions

kpy, y1q :“ ϕp}y ´ y1}q

with ϕ being a function ϕ : r0, 8q Ñ R. Typical examples are the Gaussian kernel, where
ϕGprq :“ e´ε2r2 , and the Matérn kernel, where

ϕM prq :“
Kβ´ d

2
prqrβ´ d

2

2β´1Γpβq
, β ą

d

2 .

Here, Kν is the modified Bessel function of the second kind of order ν and Γ is the gamma
function.

1.4 Suitable approximation spaces 17

A native space NkpΓq for a given symmetric and positive definite kernel function k is con-
structed by completion from the pre-Hilbert space FkpΓq :“ span tkp¨, yq | y P Γu. It can be
shown [Wen04] that NkpΓq is a RHKS for kernel k. The native space is equipped the induced
norm from the inner product

pu, vqNkpΓq “

˜

N
ÿ

j“1
αj kp¨, yjq ,

N
ÿ

k“1
βk kp¨, y1

kq

¸

NkpΓq

:“
N
ÿ

j“1

N
ÿ

k“1
αjβk kpyj , y1

kq .

As an example, the native space of a Matérn kernel with β ą d{2 and Γ “ Rd is the well-known
Sobolev space Nkβ

pRdq “ HβpRdq .
In the following, we assume the given function u lies in the native space of a kernel k,

i.e. u P NkpΓq. An appropriate finite-dimensional approximation subspace of NkpΓq can be
introduced by choosing a finite set of sampling points

X “ ty1, . . . , yN u Ă Γ .

Then, the finite-dimensional approximation subspace is

V “ Pk,X :“ spantkp¨, yq|y P Xu Ă NkpΓq .

Example 1.4 (Interpolation in RKHS). Interpolation of a function u P NkpΓq by a function
in Pk,X requires data tpyi, upyiqquN

i“1. Obviously, the interpolant IPk,X
u becomes

pIk,Xuqpyq :“
N
ÿ

j“1
αjkpy, yjq @y P Γ ,

and we can find the coefficients tαju
N
j“1 , αj P R by solving a system of linear equations with

APk,X
α “ u, α :“ pα1 . . . αN qJ, u :“ pupy1q . . . upyN qqJ (1.10)

and the interpolation matrix

APk,X
:“

¨

˚

˝

kpy1, y1q . . . kpy1, yN q
...

kpyN , y1q . . . kpyN , yN q

˛

‹

‚

. (1.11)

For symmetric and positive definite kernels, APk,X
becomes symmetric and positive definite

and, hence, regular. 4

Remark 1.5 (Best approximation and connection to machine learning). The interpolant is
the best-approximation in the reproducing kernel Hilbert space NkpΓq [Wen04], i.e.

IPk,X
u “ BPk

u .

A Lavrentiev regularization [Lav67] leads to the linear system pAPk,X
`εregIqα “ u, transform-

ing the interpolation problem to a kernel ridge regression [Wen04, VSL`15] problem. Kernel
ridge regression is a well-known technique in machine learning.

18 1 Introduction

Remark 1.6 (h- or p-refinement in kernel-based approxiamtion). Whether approximation in
RKHS falls into the class of h- or p-refinement methods, depends on the applied kernel function.
Matérn kernels with small β will lead to h-refinement, while Gaussian kernels applied in the
approximation of a smooth function will be equivalent to p-refinement.

Relation to achieved results

The multi-fidelity kernel ridge regression approach developed in Chapter 5 uses ap-
proximation in reproducing kernel Hilbert spaces / kernel ridge regression. Moreover
Chapters 6 and 7 are concerned with the efficient solution of systems of linear equations
with dense matrices as in equation (1.11).

1.5 Hierarchical approximation

In the following, we consider function approximation approaches that have in common that
they rely on a hierarchy of finite dimensional approximation spaces.

1.5.1 Multi-level function approximation

Let u : Γ Ñ R be a function in a (separable) Hilbert space F with Γ being bounded. In multi-
level function approximation we consider the approximation of u by a dense, nested sequence
of finite dimensional subspaces

V0 Ă V1 Ă ¨ ¨ ¨ Ă V` Ă ¨ ¨ ¨ Ă F .

Each subspace V` is of dimension N` :“ dim V` and is spanned from a finite basis as

V` “ span

φ`,j`

ˇ

ˇj` P t1, . . . , N`u
(

.

We consider approximations of the form

A`u :“
N
ÿ̀

j`“1
α`,j`

φ`,j`

on each level `.

Example 1.5 (Multi-level finite elements for the Poisson problem). The use of multi-level
function approximation is the base for multi-level finite element discretizations [ST03, HSS08],
e.g., of the Poisson problem with homogeneous Dirichlet boundary conditions

´∆u “ f in Γ ,

u “ 0 on BΓ .

The connection to approximation is as follows: We use a multi-level hierarchy of piecewise

1.5 Hierarchical approximation 19

linear polynomials as ansatz and test space for the problem given in weak form as
ż

Γ
∇upyq ¨ ∇vpyqdy “

ż

Γ
fpyqvpyqdy ,

where Γ is a bounded domain that can be exactly given by a triangulation

T0 :“ tτ0,1, . . . , τ0,M0u .

Then, we introduce the sequence tT`u
N`
`“1 of nested refinements of T0. For each such triangula-

tion, we choose
V` :“ tf P CpΓq|@τ P T` : f |τ is linearu ,

i.e. globally continuous, piecewise linear polynomials on the triangulation. Thereby, we end up
having a hierarchy of discretizations of the form

A`u` “ f` ,

where
ai`,j`

:“
ż

Γ
∇φ`,i`

¨ ∇φ`,j`
dy, fi`

:“
ż

Γ
fpyqφ`,i`

dy .

To transfer solutions between different levels, prolongation and restriction operators are applied.
4

Relation to achieved results

In Chapters 3 and 4, an algebraic approach (based on algebraic multigrid) is used to
construct a multi-level finite element hierarchy similar to Example 1.5.

Example 1.6 (Multi-level kernel approximation). We can also apply multi-level function
approximation in finite-dimensional subspaces of reproducing kernel Hilbert spaces [NSW99,
Wen04]. In this case, we use F “ NkpΓq with a symmetric and positive definite kernel func-
tion k. Then, we introduce a nested sequence of meshfree point sets X` :“ ty1, . . . , yN`

u with
N0 ă N1 ă . . . ă N`. Each subspace V` becomes

V` :“ Pk,X`
“ spantkp¨, yq|y P X`u ,

which induces a multi-level hierarchy of approximation spaces. Kernel interpolation / best
approximation is done as discussed before. 4

1.5.2 Approximation by hierarchical increments

As soon as we have introduced multiple levels of approximations, we can introduce the concept
of hierarchical increments. For the sequence V0 Ă ¨ ¨ ¨ Ă V` Ă ¨ ¨ ¨ Ă VL of finite-dimensional
approximation spaces, we can define incremental approximations

∆`rAsu “ pA` ´ A`´1qu ,

20 1 Introduction

where we start from ∆0rAs :“ A0. This allows us to rewrite an approximation on level L as

AL “

L
ÿ

`“0
∆`rAsu .

Such an incremental hierarchical approximation will be fundamental for the construction of
sparse tensor-product approximations in Section 1.6.

Example 1.7 (Hierarchical approximation for piecewise linear polynomials on triangulations).
We continue in the general setting of example 1.5, where we had the hierarchy of ansatz /
approximation spaces

V` :“ tf P CpΓq|@τ P T` : f |τ is linearu

for a sequence of nested triangulations.
Approximation in this space is typically done by L2 projection. That is, the task is to find a

PV`
u` P V` such that

PV`
u :“ argmin

u`PV`

}u` ´ u}L2pΓq .

With the L2-orthogonal projection PV`
: L2pΓq Ñ V`, we can introduce the incremental projec-

tion ∆`rPs with
∆`rPs :“ PV`

´ PV`´1 , ` P N, ∆0rPs :“ PV0 .

Then, we can incrementally compute the approximation PVL
u of u on level L by

PVL
u :“

L
ÿ

`“0
∆`rPsu .

Due to the properties of the spaces V` we can further introduce increment or complementary
spaces W` such that

V` “ V`´1
K
‘ W`, V0 “ W0, V`´1 X W` “ t0u, W` “ spantφ`,j`

|j` P ∇`u ,

with ∇` the set of basis indices that differ between level `´1 and `. Thereby, we can recursively
decompose a space VL as

VL “

L
à

`“0
W`, W0 :“ V0

and ∆`rPs is a projection onto W`, i.e. ∆`rPs : V Ñ W`. 4

Relation to achieved results

The sparse second moment analysis in Chapter 4 specifically makes use of hierarchical
increments from an algebraic multi-level construction.

Remark 1.7 (Hierarchical approximation in RKHS). As in the previous example, we can
(in extension of Example 1.6) build an incremental interpolation in reproducing kernel Hilbert

1.5 Hierarchical approximation 21

spaces, as proposed in [NSW99]. However, as stated in this reference, we cannot associate
increment spaces such as W` to this approximation, since the approximations on two consecutive
levels cannot be brought in a form that they are direct sums of subspaces.

1.5.3 Multi-level frames

An extension to the multi-level approximation is given by the approximation with multi-level
frames. Again, we start from a sequence of nested finite-dimensional approximation spaces

V0 Ă ¨ ¨ ¨ Ă V` Ă ¨ ¨ ¨ Ă VL Ă F ,

with V` :“ spantφ`,1, . . . , φ`,N`
u and F is now assumed to be a separable Hilbert function space

with its dual space F 1. We introduce a collection ΦL of all basis functions up to level L

ΦL :“

φ`,j`

ˇ

ˇj` P t1, . . . , N`u, ` P t0, . . . , Lu
(

.

Obviously, ΦL is no longer a basis, but a generating system. Moreover, following [HSS08], ΦL

is called a frame for F , if it holds

c1}f}2
F 1 ď

ÿ

`,j`

|xf, φ`,j`
y|2 ď c2}f}2

F 1 @f P F 1 . (1.12)

Function approximation in multi-level frames is the task to find (non-unique) coefficients α`,j`

for the representation

AF,ΦL
u “

L
ÿ

`“0

N
ÿ̀

j`“1
α`,j`

φ`,j`

such that AF,ΦL
u « u.

Example 1.8 (L2-projection onto frames). Continuing Example 1.1, we can do best approxi-
mation of a function u P L2pΓq with respect to a frame by the L2 projection

PF,ΦL
u “

L
ÿ

`“0

N
ÿ̀

j`“1
α`,j`

φ`,j`
.

The coefficients α`,j`
are computed by solving the system of linear equations

L
ÿ

`“0

N
ÿ̀

j`“1
xφ`,j`

, φ`1,i`1 yα`,j`
“ xu, φ`1,i`1 y @`1 P t0, . . . , Lu i`1 P t1, . . . , N`u .

Note that this system of linear equations is not uniquely solvable. However, we can find solutions
that are compatible with (1.12) by using an iterative conjugate gradient solver, as long as we
do not use an initial guess that is in the kernel of the system matrix. 4

22 1 Introduction

Relation to achieved results

In Chapters 3 and 4, frames are constructed from an algebraic multi-level approach that
is based on algebraic multigrid. Chapter 3 discusses the application of such algebraic
frames in context of optimal iterative linear solvers, whereas the algebraic sparse tensor
product construction in Chapter 4 applies algebraic frames for an application from
uncertainty quantification.

1.6 Sparse tensor-product approximation

At the end of Example 1.3, we observed that standard tensor product approximation can
be very expensive in terms of the required amount of function evaluations. To reduce the
amount of function evaluations for large dimensions d, we can introduce sparse tensor-product
approximations.

In the following, we mostly (i.e. with the exception of Section 1.6.4) discuss the case of Γ :“
Γp1q ˆ . . . ˆ Γpdq. For each Γpiq we have a Hilbert function space F piq and aim at approximating
functions u P F p1q b ¨ ¨ ¨ b F pdq. Moreover, for each F piq, we have a nested sequence of finite-
dimensional approximation spaces V

piq
`i

with non-negative levels `i.

1.6.1 Main approach

Recall from Section 1.4 that standard tensor product approximation uses approximations in
the space V

p1q

`1
b ¨ ¨ ¨ b V

pdq

`d
with `1 “ . . . “ `d “ L. Based on the incremental approximations

∆`i
from Section 1.5.2, we could have defined standard tensor product approximation by

ATL
u :“

ÿ

|`|8ďL

AT ∆`
u :“

ÿ

|`|8ďL

p∆`1rAV p1qs b ¨ ¨ ¨ b ∆`d
rAV pdqsq u (1.13)

with ` “ p`1, . . . , `dq and |`|8 :“ maxi |`i|. Hence, AT ∆`
is a tensor product over incremental

approximations on levels `i. Note that summation over a multi-index ` P Nd corresponds to d
nested sums over the element-wise indices of the multi-index.

Sparse tensor product approximation [HSS08, GH13, CD15] is given by

ASL
u :“

ÿ

|`|1ďL

p∆`1rAV p1qs b ¨ ¨ ¨ b ∆`d
rAV pdqsq u (1.14)

with |`|1 :“
řd

i“1 |`i|. If we denote by Apiq
SL

the sparse approximation operator that is defined
on a finite-dimensional subspace of F p1q b ¨ ¨ ¨ b F piq, i ď d, we can [HPS13] rewrite (1.14) to
be recursively given by

Apiq
SL

u “

L
ÿ

`i“0

´

∆`i
rAV piqs b Api´1q

SL

¯

u ,

observing that it holds ASL
“ Apdq

SL
u.

1.6 Sparse tensor-product approximation 23

Example 1.9 (Sparse grid interpolation). Standard sparse grid interpolation [Smo63, BG04]
for functions, e.g., of the form u : r´1, 1sd Ñ R corresponds to sparse tensor product interpola-
tion constructed from d piecewise linear approximation spaces V

piq
`i

:“ PW NL
, cf. (1.9). That

is, the sparse grid interpolation formula for a given interpolation level L is

ISL,Xu :“
ÿ

|`|1ďL

`

∆`1rIV p1q,Xp1qs b ¨ ¨ ¨ b ∆`d
rIV pdq,Xpdqs

˘

u ,

Comparing this interpolation formula to full tensor product interpolation by piecewise linear
functions, cf. Example 1.3, we observe that the sparse approach needs much less function eval-
uations than the full tensor product approach. Error estimates for the full tensor product
interpolation require bounded derivatives in each coordinate direction. To obtain roughly the
same estimates for sparse grid interpolation, we further have to require boundedness of the
mixed derivatives of u. Often, we assume

u P Wp
d pΓq :“

#

f : Γ Ñ R

ˇ

ˇ

ˇ

ˇ

ˇ

›

›

›

›

›

B|s|1f

Bys1
1 ¨ ¨ ¨ Bysd

d

›

›

›

›

›

8

ă 8, |s|8 ď p

+

.

4

Example 1.10 (Sparse grid stochastic collocation). The well-known sparse grid stochastic
collocation for the solution of partial differential equations with random input [NTW08] corre-
sponds to sparse tensor-product interpolation using univariate polynomial approximation spaces
V

piq
`i

:“ PN`
and e.g. Clenshaw-Curtis abscissas, cf. (1.8). 4

Example 1.11 (Sparse tensor product kernel approximations). In, e.g., [DGLU15, RW17],
sparse function approximation is achieved by building sparse tensor product interpolation from
univariate approximation spaces V

piq
`i

:“ span tkp¨, yiq|yi P X`i
u with X`i

uniformly distributed
points on a closed interval. 4

1.6.2 Generalized sparse tensor product approximation

A generalization of (1.14) can be obtained by approximation with respect to a downward closed
index set I Ă Nd

0. I is called downward closed [CD15], if it holds

` P I, ˜̀ ď ` ñ ˜̀ P I ,

with a component-wise comparison “ď”. Then, generalized sparse tensor product approxima-
tion is given by

ASI u :“
ÿ

`PI
β` p∆`1rAV p1qs b ¨ ¨ ¨ b ∆`d

rAV pdqsq u (1.15)

with coefficients β` defined by

β` :“
ÿ

zPt0,1ud

p´1q|z|1χI p` ` zq , χI p` ` zq :“
"

1, if p` ` zq P I,
0, else. (1.16)

24 1 Introduction

Notice that index set I can, e.g., be found by the solution of a Knapsack optimization problem
[BG04].

1.6.3 Sparse grid combination technique

The sparse grid combination technique [GSZ92] is strongly related to sparse grid tensor product
approximations. With the definitions from the previous section, it is given by

ACL
u : “

d´1
ÿ

i“0
p´1qi

ˆ

d ´ 1
i

˙

ÿ

|`|1“L´i

ˆ

A
V

p1q

`1
b ¨ ¨ ¨ b A

V
pdq

`d

˙

u

“

d´1
ÿ

i“0
p´1qi

ˆ

d ´ 1
i

˙

ÿ

|`|1“L´i

AT`
u .

Each summand AT`
u is an anisotropic full tensor product approximation of the underlying

function u, i.e.
AT`

u :“
ÿ

`1ď`

AT ∆`1 u ,

cf. (1.13). The summands are then combined in an appropriate linear combination to a sparse
grid-type approximation. A generalized version of the sparse grid combination technique is
given by

ACI u :“
ÿ

`PI
β`AT`

u

with β` from equation (1.16).

Example 1.12 (Sparse grid interpolation using the combination technique). We continue
Example 1.9. Using the sparse grid combination technique, we obtain the interpolation rule

ICL,Xu :“
d´1
ÿ

i“0
p´1qi

ˆ

d ´ 1
i

˙

ÿ

|`|1“L´i

ˆ

I
V

p1q

`1
,X

p1q

`1
b ¨ ¨ ¨ b I

V
pdq

`d
,X

pdq

`d

˙

u . (1.17)

This interpolation rule is identical to the classical sparse grid interpolation rule ISL,Xu [DS89,
BG04]. 4

Relation to achieved results

In Chapter 5, the sparse grid combination technique is combined with the approxima-
tion in reproducing kernel Hilbert spaces / kernel ridge regression in order to intro-
duce a multi-fidelity machine learning approach for quantum chemistry calculations.
Chapter 4 constructs an algebraic sparse grid combination technique to solve a model
problem from second moment analysis of elliptic problems.

1.6 Sparse tensor-product approximation 25

1.6.4 Multi-index approximation

Multi-index approximation [HANTT16] being developed out of Monte-Carlo and multi-level
Monte-Carlo methods, considers in its function approximation version (i.e. multi-index collo-
cation) an alternative view of the sparse grid combination technique, starting from function
approximations

A`u

with ` P Nd
0 a multi-index. Notice Remark 1.8 for an interpretation of such function approxi-

mations.

Using A`, literature on multi-index approximation [HANT16, HANTT16] introduces first-
order difference operators ∆i along directions 1 ď i ď d as

∆irA`us :“
"

A`u ´ A`´ei
u, if `i ą 0 ,

A`u, if `i “ 0 ,
(1.18)

with unit vectors ei. In d dimensions, we obtain the first-order mixed difference operator ∆
via

∆rA`us :“
˜

d
â

i“1
∆i

¸

rA`us “ ∆1

˜

d
â

i“2
∆i

¸

rA`us “ ∆d

˜

d´1
â

i“1
∆i

¸

rA`us .

For a general downward closed index set I, we obtain the multi-index approximation AMI u by

AMI u “
ÿ

`PI
β`∆rA`us , (1.19)

with β` from equation (1.16).

Remark 1.8 (Equivalence to generalized sparse grid combination technique). The generalized
sparse grid combination technique and multi-index approximation (by collocation) following
(1.19), are — up to the choice of the employed approximations A`u — the same approximations.
For A` “ AT`

, i.e. if the multi-index describes the anisotropic level parameter of a tensor-
product approximation, both approximations are identical. As discussed in [HANTT16], A`

could can be any type of approximation with d level parameters t`iu
d
i“1. That is, it would not

be restricted to tensor product approximations. However, to the best of the author’s knowledge,
all approximation problems discussed in literature on multi-index collocation are indeed tensor
product problems.

Relation to achieved results

The multi-fidelity machine learning approach discussed in Chapter 5 can be interpreted
as multi-index approximation in reproducing kernel Hilbert spaces with regularization.

26 1 Introduction

1.7 Low-rank approximation
In this section, we are interested in the approximation of functions A of type

A : Ip1q ˆ ¨ ¨ ¨ ˆ Ipdq Ñ R , (1.20)

where each Ipiq is an index set Ipiq :“ t1, . . . , Niu. For d “ 1 we call A vector, for d “ 2 we
call A matrix and for d ą 2 we call A tensor of order d.

The approximation of A can become a high-dimensional approximation problem if either d
is large or if d is small but the index sets Ipiq represent objects in a higher-dimensional space.

Example 1.13 (Tensor-approximation of parametric PDEs). We can consider the approxima-
tion of a parametric PDE

Lpapy, xqqupy, xq “f rbpy, xqspy, xq in Γ ˆ D̄

as a purely discrete tensor approximation problem [BG15]. To this end, we introduce a spatial
discretization with ND grid points in a set XD with indices ID. Moreover, we assume Γ “

Γp1q ˆ ¨ ¨ ¨ ˆ Γpdq with Γpiq closed intervals in R. In each dimension i, we, e.g., use a uniform
grid with NΓpiq points in sets XΓpiq and indices IΓpiq. Formally, we can then represent the
parametric solution upy, xq to arbitrary precision (for ND, NΓpiq large enough) by the mapping

A : ID ˆ IΓp1q ˆ IΓp2q ˆ ¨ ¨ ¨ ˆ IΓpdq Ñ R ,

pxjD , yj1 , . . . , yjd
q ÞÑ upxjD , pyj1 , . . . , yjd

qq .

Hence, we represent the parametric solution as a pd ` 1q-fold tensor. Obviously, the number
of non-parametric PDE evaluations to obtain each entry of this tensor is computationally in-
tractable. Instead, we consider an approximation of A, which can drastically reduce the number
of PDE evaluations. 4

Example 1.14 (Matrix approximation for function interpolation in RKHS). In Section 1.4, we
discussed function interpolation in RKHS by means of radial kernel functions k. To interpolate
a given function, we have the set X “ ty1, . . . , yN u Ă Γ Ă Rd of N abscissas and have to solve
a linear system of the form

Aα “ f (1.21)

with A :“ pkpyi, yi1qq
N
i,i1“1.

For an efficient solution of equation (1.21) for large N , we are interested to approximate the
system matrix A. Using Ip1q “ Ip2q :“ t1, . . . , Nu, we can cast A to the general setting of
equation (1.20) with d “ 2 as

A : Ip1q ˆ Ip2q Ñ R ,

pi, i1q ÞÑ kpyi, yi1q .

The approximation of a matrix is not necessarily understood as higher-dimensional problem.
However, we actually approximate a finite number of evaluations of k, which is a function
that maps from the 2d-dimensional space Γ ˆ Γ to the real numbers. Therefore, we end up
approximating a higher-dimensional object. 4

1.7 Low-rank approximation 27

Relation to achieved results

The multi-fidelity kernel ridge regression approach from Chapter 5 involves the solution
of a (regularized) linear system of equations with a system matrix as in Example 1.14.
Chapters 6 and 7 discuss the efficient parallelization and implementation of approxi-
mation techniques for Example 1.14.

This section surveys techniques for approximating two-fold tensors, i.e. matrices, by means of
low-rank approximation. Remark 1.9 will motivate, how to extend the low-rank approximation
of matrices to tensor approximation by the use of tensor formats.

Let A P Rmˆn be a real-valued matrix. For simplicity of the presentation, we assume m ď n.
Moreover, we have r P Ną0, such that r ă m and }¨} a matrix norm. In low-rank approximation
[Mar08], we aim at finding a matrix Ar that fulfills the minimization problem

Ar :“ argmin
ÃPRmˆn

}A ´ Ã} , such that rankpÃq ď r . (1.22)

Hence, low-rank approximations are best approximations by rank-r matrices with respect to
the } ¨ } norm.

1.7.1 Singular value decomposition

Following e.g. [HH94], the decomposition of a matrix A P Rmˆn of the form

A “ UΣV J

with U P Rmˆm and V P Rnˆn being orthogonal matrices is called singular value decomposition
(SVD). The matrix Σ is a diagonal matrix with non-negative diagonal entries tσiu

mintm,nu

i“1 , the
singular values, in the upper left part of the matrix. We will assume that the singular values
are sorted following a decreasing order. The SVD exists for any matrix A P Rmˆn and it can
be computed by a method related to the QR algorithm in Opmaxtm, nu3q operations [SB05].

With U “ pu1| . . . |umq and V “ pv1| . . . |vnq the approximation

A « Asvd,r :“
r
ÿ

i“1
σiuiv

J
i

is [Mar08] the low-rank approximation as defined in (1.22) with respect to the Frobenius norm
} ¨ }F . Unfortunately, always, the full matrix A has to be computed in order to build the
approximation Asvd,r. Even a partial SVD [GTY97] will require the evaluation of all matrix
entries of A [Beb00].

1.7.2 Adaptive cross approximation

The Adaptive Cross Approximation [Beb00] (with partial pivoting), cf. Algorithm 1 and Chap-
ter 6, promises to overcome the high computational cost of the SVD. It uses successive rank-1

28 1 Introduction

Algorithm 1 Adaptive cross approximation (ACA) for A P Rmˆn

function compute_adaptive_cross_approximation(A, ε)
kmax Ð k
for r “ 1, 2, . . . , k do

ûr “ A1:m,jr ´
řr´1

l“1 ulpvlqjr , Ź Col. index jr depending on implementation
ur “ pûir q´1ûr, with |pûrqir | “ }ûr}8 Ź Row index ir given as pivot position
vr “ pAir,1:nq

J
´
řr´1

l“1 pulqir vl

if
´

}ur}2}vr}2 ď
εp1.0´ηq

1.0`ε }
řr

l“1 ulvl}F

¯

then Ź Stopping criterion
kmax Ð r Ź kmax is adaptively found rank
stop loop

U Ð pu1, . . . , ukmaxq

V Ð pv1, . . . , vkmaxq

return U , V

updates to build an approximation of rank kmaxpεq of the form

A « Aaca,ε “

kmaxpεq
ÿ

i“1
uiv

J
i

with ui, vi being defined in Algorithm 1. Approximations to A are computed for a fixed
tolerance ε with respect to the Frobenius norm. The tolerance influences the rank kmaxpεq of
the approximation. Since ACA only evaluates some rows and columns of A, it allows to build
approximations of A in an efficient way.

Example 1.15 (Approximation of kernel matrices by ACA). We continue Example 1.14.
Hence, we discuss the approximation of the system matrix showing up in interpolation in RKHS.
It is known from [Beb00] that ACA (with full pivoting) converges exponentially for smooth
kernels k. This holds for example in the case of the Gaussian kernel kpy, y1q :“ e´ε2}y´y1}2,
i.e. the matrix A :“ pe´ε2}yi´yj}2

qN
i,j“1.

However, many radial kernel functions, such as the important example of kernels of the
Matérn class, cf. Section 1.4, are not smooth at the diagonal kpy, yq. In these cases, this
favorable error decay is no longer present. Hierarchical matrices [Hac15] introduce a matrix
approximation that allows to overcome this limitation. H-matrices will be discussed in Sec-
tion 1.7.3. 4

Relation to achieved results

In Chapters 6 and 7, ACA is applied in context of hierarchical matrices for the ap-
proximation of kernel matrices, cf. Example 1.15.

Remark 1.9 (Tensor approximation). All low-rank approximation techniques discussed so
far were introduced for matrices. We now sketch how to extend this idea to order-d tensors,

1.7 Low-rank approximation 29

cf. [BG15]. Recall that such a tensor is of the form

A : Ip1q ˆ ¨ ¨ ¨ ˆ Ipdq Ñ R . (1.23)

From a notation point of view, we can also write A P RI with I :“ I1 ˆ ¨ ¨ ¨ ˆ Id. Collecting
all dimensions in a set Xd :“ t1, . . . , du, we can group dimensions in subsets t Ă Xd with
complements t̄ :“ Xdzt giving rise to the notation It :“

Ś

iPt Ipiq. A matricisation with respect
to t Ă Xd is a function

M : RI Ñ RIt b RIt̄

that splits an order-d tensor into the tensor product of two tensors with underlying index sets
It and It̄. The tensor product RIt b RIt̄ can be understood as the set of all matrices of size
R|It|ˆ|It̄| after linearization of the index sets It and It̄. Hence, matricisation of a tensor is a
linearization and reordering of the index sets by dimension.

Matriciation translates tensors into matrices. Thereby, it becomes possible to apply low-
rank approximation techniques to tensors. To get efficient low-rank approximations of tensors,
tensors are recursively subdivided as exemplified in Figure 1.9 following [BG15] for a five-fold
tensor. The sets correspond to the subsets t discussed before. The type of structure of this
subdivision is called tensor format. The decomposition shown in Figure 1.9 corresponds to a
hierarchical tensor format. Roughly speaking, low-rank approximations via matriciations are
done for each dimension split.

Figure 1.9: Hierarchical tensor formats are based on a dimension-wise decomposition of the
tensor and its associated index sets [BG15].

1.7.3 Hierarchical matrices

Since Examples 1.14 and 1.15 are fundamental for this thesis, we would like to invest some
more time in the discussion of an approximation of matrices of type

A :“ pkpyi, yjqqN
i,j“1 ,

with points yi in a set X :“ ty1, . . . , yN u Ă Γ. As discussed in Example 1.15, some kernel
functions k are not smooth on the diagonal, however they are smooth away from the diagonal.
This is formalizes by the notion asymptotically smooth. A kernel k is asymptotically smooth,

30 1 Introduction

if we have constants c1, c2 P Rą0 such that

|Bα
y B

β
y1kpy, y1q| ď c1

p|α| ` |β|q!
pc2}y ´ y1}q|α|`|β|

|kpy, y1q|

for arbitrary y, y1 P Γ with y ‰ y1 and all multi-indices α, β P Nd
0.

Matrices A constructed from asymptotically smooth kernels k can be approximated by a
combination of a hierarchical decomposition of A and ACA in OpN log Nq complexity (for
fixed target accuracy ε). This type of approximation is called hierarchical matrix of H-matrix
[BGH03, Hac15].

Using a hierarchical clustering of the points in X, H-matrices can restructure a given input
matrix A of the above form such that one can distinguish two classes of matrix blocks. Ad-
missible matrix blocks are blocks with entries kpy, y1q such that y and y1 are far away from
each other. Inadmissible matrix blocks are blocks with entries kpy, y1q such that y and y1 are
close to each other. Admissible matrix blocks only contain evaluations of the kernel k that are
away from the diagonal, hence k is smooth in this regime. Therefore, cf. Example 1.15, an
approximation of an admissible block can efficiently be done by ACA. In contrast, inadmissible
blocks contain evaluations of k in the non-smooth regime close to the diagonal. Therefore, no
approximation is applied to inadmissible blocks. As long as we have a controlled, small amount
of small inadmissible blocks, H-matrices are a very efficient mean to approximate the above
kernel matrices. For further details on H-matrices, see Chapters 6 and 7.

Remark 1.10 (ACA and H-matrics). The original H-matrix technique [BGH03] relies on the
approximation of the admissible blocks by analytic expansions of a given kernel function k. By
replacing this approximation by ACA, H-matrices become a purely algebraic approach based on
matrix approximation.

Relation to achieved results

Chapters 6 and 7, deal with the efficient reformulation and parallelization of H-matrices
on many-core hardware.

1.8 Overview of achieved results
In the following, the five papers and one preprint that form this cumulative habilitation are
briefly discussed. The results are structured following the application scenario in which they
are applied. In case a contribution is not single-authored, the results review is followed by a
statement on the own contribution of the author.

1.8.1 Contributions in context of uncertainty quantification
Ensemble Kalman filters for reliability estimation in perfusion inference. In this work, which
is single-authored and is available in the International Journal for Uncertainty Quantification
under DOI 10.1615/Int.J.UncertaintyQuantification.2018024865, the author solves the
Bayesian inference problem discussed in Section 1.2.1 by the use of the Ensemble Kalman

1.8 Overview of achieved results 31

Filter. While the Ensemble Kalman Filter technique, which uses Monte Carlo sampling, is
known from the literature, the main contribution of this work is the modelling of the given
imaging task as Bayesian inference problem. Previous work in the field solved the imaging
task in a purely deterministic sense, e.g., by deconvolution and could therefore give no measure
for the uncertainty present in the inferred predictions. The new approach allows to quantify
these uncertainties giving additional reliability information to radiologists, which might improve
diagnosis of, e.g., cancer and strokes in the future. This real-world application is a large-scale
problem due to the excessive size of volumetric time-dependent imaging data.

Subspace correction methods in algebraic multi-level frames. This single-authored contri-
bution is available in the journal Linear Algebra and its Applications under DOI
10.1016/j.laa.2015.09.026. It introduces an algebraic multi-level frame construction. Al-
gebraic multi-level frames are used to build a new class of iterative linear solvers for discretized
elliptic problems on complex geometries. The new solvers are independent of these geometries
and show optimal problem-size independent convergence rates. Similar solvers have been only
available for geometrically constructed and thus intrusive multi-level frame approaches. The
new algebraic construction was used as starting point of the next publication in uncertainty
quantification.

On the algebraic construction of sparse multi-level approximations of elliptic tensor product
problems. In this co-authored work, together with Helmut Harbrecht, which is published
in Springer’s Journal of Scientific Computing under DOI 10.1007/s10915-018-0807-6, the
second moment analysis discussed in Section 1.2.2 is solved by means of the newly introduced
algebraically constructed sparse grid combination technique. The application is a large-scale
problem that is a model for second moment analysis tasks in uncertainty quantification. While
sparse grid combination technique approaches for this type of problem have been available
beforehand, the new approach now works only with the information of a linear system arising
in the discretization of one of the underlying domains. Thereby it becomes possible to apply the
sparse grid combination technique to discretizations provided by arbitrary software packages.
Moreover, this approach enables to apply the sparse grid combination technique without special
handling of complex geometries.

Own contribution. The author of this thesis is the corresponding author the discussed article
and would be the first author in a non-alphabetical ordering of the authors1. The idea and ex-
pertise for the application of the sparse grid combination technique to second moment analysis
was contributed by Helmut Harbrecht. The author of this thesis contributed the knowledge
on algebraic frames, did the numerical implementation and tests and wrote major parts of the
manuscript.

1.8.2 Contributions in context of machine learning

Boosting quantum machine learning models with multi-level combination technique: Pople
diagrams revisited. This co-authored work is published in the Journal of Chemical Theory
and Computation under DOI 10.1021/acs.jctc.8b00832. It introduces the sparse tensor

1Alphabetical ordering of the authors is the standard in mathematics.

32 1 Introduction

product approximation, discussed in Section 1.6, to the field of machine learning based on
kernel ridge regression. From a mathematical point of view, it combines approximation in
reproducing kernel Hilbert spaces with the sparse grid combination technique / multi-index
approximation. In the specific application, in which kernel ridge regression is called Quantum
Machine Learning, the task is to train / approximate results of quantum chemistry calculations,
cf. Section 1.2.3. The sparse grid combination technique is formally applied with respect to
the number of molecules used in the machine learning, with respect to the applied quantum
chemistry calculation model and with respect to the size of the so-called basis set used in each
of the applied models. The resulting three-dimensional combination techique together with
kernel ridge regression, allows to strongly outperform classical kernel ridge regression in the
application field, when fixing a target training accuracy and comparing the number of most
expensive quantum chemistry calculations that were necessary in the training to achieve this
accuracy.

Own contribution. In this interdisciplinary collaboration, this thesis’ author is the first au-
thor (in a non-alphabetical ordering). Further authors are (in this order) Bing Huang, Helmut
Harbrecht and Anatole von Lilienfeld. While Anatole von Lilienfeld and Helmut Harbrecht
combined the ideas of Quantum Machine Learning and the sparse grid combination technique,
and Bing Huang provided the quantum chemical calculations, the author of this thesis devel-
oped and implemented the concrete realization of the proposed method. All numerical results
with respect to “learning” were provided by the author. Moreover, a substantial contributions
has been made with respect to the textual content of the article.

Algorithmic patterns for H-matrices on many-core processors. In this single-authored work
by the author, which is published in Springer’s Journal of Scientific Computing under DOI
10.1007/s10915-018-0809-4, the author introduces space filling curves as main spatial data
structure to H-matrices, cf. Section 1.7.3. Based on this reformulation of the method, the
author is able to introduce the first fully many-core parallel implementation of the H-matrix
construction and H-matrix-vector product based on the additional core components of a many-
core parallel tree traversal and batching of similar calculation tasks. The main application for
this matrix approximation technique in this article are the interpolation matrices APk,X

that
show up in kernel-based interpolation, cf. Example 1.4, and that are used for training in the
previous work on machine learning. Using the structuring by space filling curves and the
other core components, strong performance improvements can be reported for the introduced
many-core parallelization, comparing it to a multi-core parallel standard implementation on
equally-priced hardware. This result will, in the long-run, lead to a much faster kernel ridge
regression training / kernel-based approximation.

A scalable H-matrix approach for the solution of boundary integral equations on multi-
GPU clusters. This co-authored work, together with Helmut Harbrecht, is currently under
review in the journal Computers & Mathematics with Applications. It is a follow-up work of
the previously discussed H-matrix work. Here, a second level of parallelization is introduced,
leading to a scaling of the H-matrix approach over several many-core processors. The specific
focus of this work is further on the evaluation of kernel functions / matrix entries that are very
computational expensive. This has been realized in context of boundary integral equations.

1.8 Overview of achieved results 33

Note that the situation of an expensive kernel evaluation will, however, also be present in many
machine learning applications, in which the parameter space is very high-dimensional.

Own contribution. The author of this thesis is the corresponding author of the discussed
article and would be the first author in a non-alphabetical ordering of the authors. Knowledge
on the boundary integral application and a sequential implementation were provided by Hel-
mut Harbrecht. This thesis’ author developed the parallelization beyond a single many-core
hardware, parallelized the boundary integral equation code on many-core hardware, did all
numerical tests and wrote a major part of the textual content.

References
[Beb00] M. Bebendorf. Approximation of boundary element matrices. Numerische Math-

ematik, 86(4):565–589, 2000.

[BG04] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[BG15] J. Ballani and L. Grasedyck. Hierarchical tensor approximation of output quan-
tities of parameter-dependent PDEs. SIAM/ASA Journal on Uncertainty Quan-
tification, 3(1):852–872, 2015.

[BGH03] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices
with applications. Engineering Analysis with Boundary Elements, 27(5):405–422,
2003. Large scale problems using BEM.

[BMR82] A. Brandt, S. F. McCormick, and J. W. Ruge. Algebraic multigrid (AMG) for au-
tomatic multigrid solutions with applications to geodetic computations. Technical
report, Inst. for Computational Studies, Fort Collins, CO, USA, 1982.

[BNT10] I. Babuka, F. Nobile, and R. Tempone. A stochastic collocation method for
elliptic partial differential equations with random input data. SIAM Review,
52(2):317–355, 2010.

[BPX90] J. H. Bramble, J. E. Pasciak, and J. Xu. Parallel multilevel preconditioners.
Mathematics of Computation, 55(191):1–22, 1990.

[Caf98] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods. Acta Numerica, 7:1–49,
1998.

[CD15] A. Cohen and R. DeVore. Approximation of high-dimensional parametric PDEs.
Acta Numerica, 24:1–159, 2015.

[Dah97] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta nu-
merica, 6:55–228, 1997.

[DGLU15] Z. Dong, E. H. Georgoulis, J. Levesley, and F. Usta. Fast multilevel sparse
Gaussian kernels for high-dimensional approximation and integration. Preprint
arXiv:1501.03296, 2015.

34 1 Introduction

[DS89] F. Delvos and W. Schempp. Boolean methods in interpolation and approximation.
Pitman research notes in mathematics series. Longman Scientific & Technical,
Harlow, Essex, England; Wiley, New York, USA, 1989.

[GH13] M. Griebel and H. Harbrecht. A note on the construction of L-fold sparse tensor
product spaces. Constructive Approximation, 38(2):235–251, 2013.

[Gil15] M. B. Giles. Multilevel Monte Carlo methods. Acta Numerica, 24:259–328, 2015.

[Gri94] M. Griebel. Multilevel algorithms considered as iterative methods on semidefinite
systems. SIAM Journal on Scientific Computing, 15(3):547–565, 1994.

[GSZ92] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution
of sparse grid problems. In P. de Groen and R. Beauwens, editors, Iterative
Methods in Linear Algebra, pages 263–281. IMACS, Elsevier, North Holland, 1992.

[GTY97] S. A. Goreinov, E. E. Tyrtyshnikov, and A. Y. Yeremin. Matrix-free iterative
solution strategies for large dense linear systems. Numerical Linear Algebra with
Applications, 4(4):273–294, 1997.

[Hac12] W. Hackbusch. Tensor spaces and numerical tensor calculus, volume 42 of
Springer series in computational mathematics. Springer, Heidelberg, 2012.

[Hac15] W. Hackbusch. Hierarchical Matrices: Algorithms and Analysis. Springer, 1st
edition, 2015.

[Ham09] J. Hamaekers. Tensor Product Multiscale Many–Particle Spaces with Finite–Order
Weights for the Electronic Schödinger Equation. Phd thesis, Institute for Numer-
ical Simulation, Universiy of Bonn, Germany, 2009.

[HANT16] A.-L. Haji-Ali, F. Nobile, and R. Tempone. Multi-index Monte Carlo: when
sparsity meets sampling. Numerische Mathematik, 132(4):767–806, 2016.

[HANTT16] A.-L. Haji-Ali, F. Nobile, L. Tamellini, and R. Tempone. Multi-index stochas-
tic collocation for random PDEs. Computer Methods in Applied Mechanics and
Engineering, 306:95–122, 2016.

[Hei01] S. Heinrich. Multilevel Monte Carlo methods. In Proceedings of the Third Inter-
national Conference on Large-Scale Scientific Computing-Revised Papers, LSSC
’01, pages 58–67, London, UK, 2001. Springer, Berlin, Germany.

[HH94] G. Hämmerlin and K.-H. Hoffmann. Numerische Mathematik. Springer, Berlin,
Germany, 4th edition, 1994.

[HPS12] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the
pivoted Cholesky decomposition. Applied Numerical Mathematics, 62(4):428–440,
2012.

1.8 Overview of achieved results 35

[HPS13] H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based
k-th moment analysis of elliptic problems with random diffusion. Journal of
Computational Physics, 252:128–141, 2013.

[HSS08] H. Harbrecht, R. Schneider, and C. Schwab. Multilevel frames for sparse tensor
product spaces. Numerische Mathematik, 110(2):199–220, 2008.

[Lav67] M. Lavrent’ev. Some Improperly Posed Problems of Mathematical Physics.
Springer tracts in natural philosophy. Springer, Berlin, Germany, 1967.

[Loè78] M. Loève. Probability Theory II. Graduate texts in mathematics. Springer, Berlin,
Germany, 1978.

[Mar08] I. Markovsky. Structured low-rank approximation and its applications. Automat-
ica, 44(4):891–909, 2008.

[NSW99] F. Narcowich, R. Schaback, and J. Ward. Multilevel interpolation and approxi-
mation. Applied and Computational Harmonic Analysis, 7(3):243–261, 1999.

[NTW08] F. Nobile, R. Tempone, and C. Webster. A sparse grid stochastic collocation
method for partial differential equations with random input data. SIAM J. Numer.
Anal., 46(5):2309–2345, 2008.

[Ran17] R. Rannacher. Numerik 0: Einführung in die Numerische Mathematik. Heidelberg
University Publishing, 2017.

[RC15] S. Reich and C. Cotter. Probabilistic Forecasting and Bayesian Data Assimilation.
Cambridge University Press, 2015.

[RG18] A. Rüttgers and M. Griebel. Multiscale simulation of polymeric fluids using
the sparse grid combination technique. Applied Mathematics and Computation,
319:425–443, 2018.

[RW17] C. Rieger and H. Wendland. Sampling inequalities for sparse grids. Numerische
Mathematik, 136(2):439–466, 2017.

[SB05] J. Stoer and R. Bulirsch. Numerische Mathematik 2. Springer, Berlin, Germany,
fifth edition, 2005.

[Smo63] S. Smolyak. Quadrature and interpolation formulas for tensor products of certain
classes of functions. Soviet Mathematics, Doklady, 4:240–243, 1963.

[ST03] C. Schwab and R.-A. Todor. Sparse finite elements for elliptic problems with
stochastic loading. Numerische Mathematik, 95(4):707–734, 2003.

[Stu10] A. M. Stuart. Inverse problems: A Bayesian perspective. Acta Numerica,
19:451–559, 2010.

36 1 Introduction

[VSL`15] K. Vu, J. C. Snyder, L. Li, M. Rupp, B. F. Chen, T. Khelif, K.-R. Müller, and
K. Burke. Understanding kernel ridge regression: Common behaviors from simple
functions to density functionals. International Journal of Quantum Chemistry,
115(16):1115–1128, 2015.

[Wen04] H. Wendland. Scattered Data Approximation. Cambridge University Press, 2004.

[WLB09] J. A. Witteveen, A. Loeven, and H. Bijl. An adaptive stochastic finite elements
approach based on Newton-Cotes quadrature in simplex elements. Computers &
Fluids, 38(6):1270–1288, 2009.

Part I

Contributions in context of uncertainty
quantification

37

2 Ensemble Kalman filters for reliability
estimation in perfusion inference

2.1 Introduction
Medical imaging by x-rays, magnetic resonance imaging (MRI) and computed tomography (CT)
has considerably changed medical diagnosis throughout the last decades. Often, contrast agents,
i.e. specific liquid chemicals, are injected into the patients blood circulation during the imaging
process. This leads to contrast–enhanced images of higher contrast in some regions of the
human body. In this work, we study inverse problems for a specific MRI or CT imaging task.
That is, we aim at recovering a quantity of interest in medical imaging, which is derived by
dynamic contrast–enhanced (DCE) imaging. In dynamic contrast–enhanced imaging, a time-
dependent series of radiological images of a part of the patients body (e.g. the brain) is taken
immediately after injecting a contrast agent into the patient’s blood circulation. By observing
the time-dependent concentration evolution of the contrast agent inside the patient’s tissue, it
is possible to recover information about the blood flow rates, i.e. the perfusion.

The outcome of the image acquisition process is a time-discrete series of tree-dimensional
(space-discrete) concentration images c of a part of the patient body. The actual perfusion
evaluation is a post-processing step, being preceded by image de-noising and motion compensa-
tion. Currently, blood perfusion is computed independently per discrete tissue volume element,
i.e. voxel, thus spatial information is mostly neglected. Variants of the indicator-dilution theory
[BGKW10, FKG`11, Sou14] describe the concentration of a contrast agent in tissue at a given
point in time as the result of a convolution in time of the (known) time-dependent arterial or
blood circulation inflow concentration cart with an unknown tissue-dependent kernel function
k. Blood perfusion is computed as a weighted maximum or point evaluation of the unknown
kernel function.

Current state of the art methods aim at recovering the unknown time-dependent kernel
function for given discrete measurements of the contrast agent in tissue. The kernel function is
either modeled as a parametrized analytic function [Tof97, PRM`06, FKG`11] or discretized
as a fully unknown function [BGKW10, ØWC`96, FKG`11]. Then, most approaches rely on
a deterministic reconstruction of the kernel function, involving the solution of a deconvolution
problem with regularization.

One drawback of the use of motion compensation, de-noising and deterministic deconvolution
lies in the loss of information on the quality of a computed solution. That is, probabilistic
information about the measurement accuracy and errors in space and time with their influence
on the exactness on the computed quantity of interest are neglected or even lost.

In this work, we propose an approach to infer perfusion in the discussed application case while
keeping the probabilistic information on the solution. Thereby, we overcome the discussed draw-
back of knowledge loss. To achieve this, we model the inference problem as a sequential data

39

40 2 Ensemble Kalman filters for reliability estimation in perfusion inference

assimilation problem: First, the unknown kernel function k is described as an unknown system
state, for which a predictive time-discrete stochastic system state model is introduced. In this
model, the kernel function is represented as a random variable. Then, a time-discrete stochastic
observation model describes the relationship of the current approximation of k and the noisy
measurements delivered by medical imaging. Finally, the well-known Ensemble Kalman Filter
(EnKF) [Eve09, Stu10, ILS13, ESS15] is used to compute an ensemble–based approximation
of the posterior probability density function (PDF) of k given the system state model and the
(noisy) measurements. Based on this PDF, means, cumulative distribution functions, etc. can
be computed. The whole sequential data assimilation methodology is applied to (noisy) artifi-
cial measurement data generated by a Digital Perfusion Phantom [RPV`11, Pia12, Man], i.e. a
forward model describing the mapping of perfusion information to medical images. Note that
we stick to the use of a Digital Perfusion Phantom, instead of using exemplary patient data
since, first, it allows to artificially create arbitrary amounts of radiological images and, second,
a scanner- and patient-independent way to analyse perfusion estimation methods is highly de-
sired in radiology. Certainly, applying the proposed methodology (together with radiologists)
to real patient data is future work.

The data assimilation problem that we will model in Section 2.3 will stick to Gaussian random
fields and a linear forward model. This is a strong simplification, allowing to analytically
solve the data assimilation problem by the original Kalman filter [RC15], However, we use the
EnKF, which is a generalization of this Kalman filter, usually being applied in a non-linear,
non-Gaussian setting. For more details on the connection between EnKF and the Kalman filter
and a convergence analysis in the linear Gaussian case see [MT18, Ton18], while EnKFs for
inverse problems are discussed in [ILS13, SS17, SS18] and many extensions and alternatives for
the EnKF are, e.g., developed in [And01, And03, TAB`03, ZZH09, Rei13, RC13]. We decided
to use the EnKF here, since we consider this work as a starting point for much more involved
approaches for the prediction of perfusion. In fact, the rather simple linear forward model from
the indicator dilution theory should be replaced by more complex or even PDE-based models,
which will certainly no longer be linear. Moreover, we expect that a more involved evolution
model, cf. Section 2.3.3, with non-Gaussian noise might become valid in real application cases.
Therefore, we here already introduce the more involved EnKF framework, while considering
other forward models and non-Gaussian noise as future work.

To the best of our knowledge, we consider the discussed work to be a new contribution
to the field. Nevertheless, there has been previous work on the use of Ensemble Kalman
Filters in the application scenario. In [NSL16], the authors concentrate on the introduction
of a tissue model that includes space-dependent information. To achieve this, a blood flow
model is combined with an EnKF. Preliminary results for this approach are given. In contrast,
we focus here directly on the mathematical setting based on the indicator-dilution theory
that is well-known and, therefore, well accepted by radiologist. Hence, our methodology is
considered as an extension to the existing standard methodology introducing the opportunity
to derive statistical information on the computed solution. In addition to the different objective
compared to [NSL16], we also perform a large number of parameter studies and convergence
tests, which are crucial to understand the properties of the method.

This article is organized as follows. In Section 2.2, we give a mathematical model for the
radiological imaging and perfusion extraction mechanism. Section 2.3 outlines our numerical

2.2 Modeling radiological imaging and perfusion extraction 41

approach based on sequential data assimilation using EnKF. Numerical results are given in
Section 2.4 while Section 2.5 summarizes the discussed work.

2.2 Modeling radiological imaging and perfusion extraction

In the following, we start by giving an abstract model for the transport of contrast agent.
Then, measurements by e.g. MRI are abstractly modeled. A concrete model for the contrast
agent distribution is given by the indicator-dilution theory. Finally, our quantity of interest,
i.e. blood perfusion, is introduced and the deterministic inference problem is summarized.

2.2.1 Abstract model for contrast agent transport

Shall Dtiss Ă R3 be the tissue domain in the human body for which we want to derive informa-
tion by dynamic contrast–enhanced imaging. We study contrast agent transport / concentra-
tions in a time interval r0, T s Ă R with T being the final time. The inflow concentration of the
contrast agent (at some arterial inlet) is a function cart : r0, T s Ñ Rě0 . The time-continuous
contrast agent concentration in tissue can be modeled as a function c : Dtiss ˆ r0, T s Ñ Rě0 .
Both are related to each other by an (unknown) operator B, with

cp¨, tq “ Brcartsptq (2.1)

that models the function of the human body with respect to contrast agent transport.

2.2.2 Measuring contrast agent concentration in tissue

Appropriate measurement devices (CT, MRI, . . .) usually have a cuboidal measurement do-
main. Therefore, we start by limiting Dtiss to Dmeas “

Ś3
d“1r0, ads with a “ pa1, a2, a3qJ P R3

describing the size of the measurement domain. For simplicity, we assume the measurement
domain and the area of interest to match exactly, i.e. Dmeas “ Dtiss, excluding cases in which
some part of the measurement domain does not contain valid tissue. Moreover, Dmeas is sim-
plified as being stationary in time, i.e. the measurement device (or the patient) does not move
or movements are considered as measurement error.

The finite spatial resolution ND P N3 of the measurement device leads to a decomposition of
Dmeas into Nvoxel “

ś3
d“1 N

pdq

D volume elements or voxels of volume Vvoxel “
ś3

d“1 ad{N
pdq

D for
which we obtain averaged (constant) measurements. We introduce a measurement operator Ψ
that gives for a given exact contrast agent concentration c and a chosen point in time t P r0, T s

a measurement vector cptq P RNvoxel
ě0 as

cptq “ Ψrcsptq :“ Θrcsptq ` Ercsptq .

Here, Θ is a noise-free measurement-operator and is usually a volumetric average over each
voxel being equivalent to a piece-wise constant approximation in space. E abstractly models a
(potentially non-linear) additive error (noise, movements, technical problems, . . .).

To reflect time-discrete measurements, we introduce Nobs ordered, pair-wise different discrete
observation times tobs

i P r0, T s, i P t1, . . . , Nobsu, at which measurements or observations are

42 2 Ensemble Kalman filters for reliability estimation in perfusion inference

done, giving the observation matrix C :“ pcjiqj“1,...,Nvoxel,i“1,...,Nobs
composed of observation

vectors ci as C “ pc1| . . . |cNobs
q with

ci “ Ψrcsptobs
i q :“ Θrcsptobs

i q ` Ercsptobs
i q . (2.2)

2.2.3 Contrast agent transport model following the indicator-dilution theory

The indicator-dilution theory (IDT) [BGKW10] provides a model for the time evolution of
the contrast agent concentration in a reference voxel Dvoxel Ă Dtiss with volume Vvoxel, given
the arterial inflow cart. While, in this standard model, the contrast agent’s concentrations are
assumed to be constant in each voxel, we first want to formulate the IDT as a space-continuous
model and then move over to a discrete description as consequence of a measurement process.
Our continuous version of the indicator-dilution theory–based transport model replaces B in
eq. (2.1) with the model operator BIDT given via

cpx, tq “ BIDT rcart, ksptq :“
ż T

0
cartpτqkpx, t ´ τqdτ , px, tq P Dtiss ˆ r0, T s . (2.3)

Kernel k : Dtiss ˆ r0, T s Ñ R fully characterizes the properties of the tissue at point x. In
order to have an well-defined integrand, we assume kp¨, tq “ 0 for t ă 0. Note that the model
operator BIDT is actually independent of the spatial position.

We now apply the measurement operator Ψ to eq. (2.3) obtaining

Ψrcsptq “ Θ rBIDT rcart, kss ptq ` E rBIDT rcart, kss ptq

“

ż T

0
cartpτqkpt ´ τqdτ ` E rBIDT rcart, kss ptq ,

where k “ pk1, . . . , kNvoxel
qJ is a vector of univariate kernel functions kj : r0, T s Ñ R. Since we

are interested in time-discrete observations, we limit our discussion to observation times tobs
i

yielding

ci “ Ψrcsptobs
i q “

ż T

0
cartpτqkptobs

i ´ τqdτ ` eipcart, kq ,

with the abbreviation eipcart, kq :“ E rBIDT rcart, kss ptobs
i q. For a single voxel

j P t1, . . . , Nvoxelu, we obtain

cobs
j,i “

ż T

0
cartpτqkjptobs

i ´ τqdτ ` ej,ipcart, kq .

In case of ej,ipcart, kq “ 0, this boils down to the classical indicator-dilution-theory model given
on a reference voxel j. Obviously, this model is independent of the spatial position of the voxel
j. The classical theory further introduces a mean density ρj P Rě0 in a voxel j, which becomes
of interest in the following subsection.

2.3 Numerical approach by sequential data assimilation 43

2.2.4 Perfusion

The inference task discussed in this article is to compute a time-stationary perfusion (blood
flow) information p P RNvoxel given the (assumed to be exactly known) inflow concentration
cart and the observation matrix C. Formally, the blood perfusion in a given voxel j can be
evaluated as quantity of interest of the computed response function kj as

pj :“ ppkjq :“ 1
ρj

kjp0q .

From a mathematical point of view, this quantity has nice properties, since it is just a point
evaluation of the response function. In practice [BGKW10], perfusion is however often evalu-
ated as

p̃j :“ p̃pkjq :“ 1
ρj

max
tPr0,T s

kjptq .

For simplicity and since we use just artificial input data, we stick to the first version of this
quantity of interest.

2.2.5 Deterministic inference problem

To summarize this section, we formulate the deterministic problem that we aim to solve: For
given measurement time T P R, arterial inflow cart : r0, T s Ñ Rě0, measurement/observa-
tion times tobs

1 ă tobs
2 ă . . . ă tobs

Nobs
and observation matrix C or vectors ci P RNvoxel , i P

t1, . . . , Nobsu, we aim at computing a vector k “ pk1, . . . , kNvoxel
qT of kernel functions kj :

r0, T s Ñ R and the derived quantity of interest p “ pp1, . . . , pNvoxel
qJ with pj “ kjp0q{ρj such

that

cj,i «

ż T

0
cartpτqkjptobs

i ´ τqdτ ` ej,ipcart, kq , j P t1, . . . , Nvoxelu, i P t1, . . . , Nobsu . (2.4)

Clearly, this problem is underdetermined with the given requirements. Furthermore, we have
not specified the nature of the error term, yet. This is why we used the notion “«”. A much
clearer idea of the concept of a solution to this problem is given in the next section, where we
reformulate the problem as Bayesian sequential data assimilation problem.

2.3 Numerical approach by sequential data assimilation

In this section, we first introduce a discretization for the model discussed in the last section.
This is necessary, since we will use its discretized version in context of sequential data assimi-
lation, afterwards. An approximation to the solution of the assimilation problem is derived by
the Ensemble Kalman Filter that is briefly introduced as final part of this section.

44 2 Ensemble Kalman filters for reliability estimation in perfusion inference

2.3.1 Discretized observation model

We start by discretizing eq. (2.4) for fixed i P t1, . . . , Nobsu and fixed j P t1, . . . , Nvoxelu.
Numerical quadrature using a rectangular rule gives

cj,i « ∆τ

Nq´1
ÿ

q“0
cartpτqqkjptobs

i ´ τqq ` ej,ipcart, kq ,

with Nq equidistant abscissas τq :“ q ¨ ∆τ and ∆τ :“ T
Nq

. In the original problem setting, the
observation times tobs

i can be chosen arbitrarily. However, we here introduce a simplification, in
which we assume the observation times to be given for a fixed time step size ∆tobs. Moreover,
this time step size shall be a multiple of ∆τ , i.e.

tobs
i :“ i ∆tobs , ∆tobs :“ s ¨ ∆τ , s P N .

Thereby, we obtain

cj,i « ∆τ

Nq´1
ÿ

q“0
cartpτqqkjptobs

i ´ τqq ` ej,ipcart, kq

“ ∆τ

Nq´1
ÿ

q“0
cartpq∆τqkj ppi s ´ qq∆τq ` ej,ipcart, kq .

Since we now only need cart and kj being evaluated at multiples of ∆τ , we can replace them by
vector cart “

`

cart,0, . . . , cart,Nq´1
˘J such that cart,q :“ cartpq∆τq and matrix K P RNqˆNvoxel

with K :“ pkq,jqq,j such that kq,j :“ kjpq∆τq, yielding

cj,i « ∆τ

Nq´1
ÿ

q“0
cart,q kpi s´qq,j ` ej,ipcart, kq .

With the extension of kjptq “ 0 for t ă 0 and some index substitutions, we can finally find (for
each j, i) a (degenerated) matrix Hj,i P R1ˆNq such that

cj,i « Hj,ikj ` ej,ipcart, kq , (2.5)

where the kj P RNq are the column vectors of matrix K, i.e. K “ pk0| . . . |kNq´1q.

Following the nomenclature of [RC15], we next reformulate the deterministic inference prob-
lem from Section 2.2.5 as a sequential data assimilation problem. To this end, we first translate
the involved quantities into random variables as in a Bayesian inference problem. Thereafter,
we introduce the basic concepts of sequential data assimilation.

Since the problem decouples for all voxels j P t1, . . . Nvoxelu, we keep j fixed for the rest of
this section.

2.3 Numerical approach by sequential data assimilation 45

2.3.2 Probabilistic view of inference

Let be pΩ, F , Pq a probability space. In Bayesian inference we want to gain information on a
system state variable for given observation(s). In our context, the state variable is the time-
continuous kernel function kj . However, for simplicity and since we deal with discrete data
anyway, we infer the discrete kj P RNq from eq. (2.5), instead. Therefore, we introduce a new
random variable

kj : Ω Ñ RNq , (2.6)

replacing the time-discrete deterministic solution vector kj .1 Moreover, we introduce a random
variable ej,ipcartq : Ω Ñ R, replacing the error term used before. Note that we assume kj and
ej,i to be independent random variables. This is a rather strong simplification, since we initially
modeled ej,ipcart, kq to be a potentially non-linear error in the observation data, which itself
is given in the indicator-dilution-theory by the arterial inflow cart and the tissue properties
modeled by kernel k. That is, we – at this point – decouple the error in the observation from
the specific patient tissue. This decoupling is reflected by the new notation ej,ipcartq. Finally,
we also consider each observation cj,i as random variable cj,i : Ω Ñ R, which is usually called
observed variable. Using eq. (2.5), cj,i is defined as

cj,ipωq :“ Hj,ikjpωq ` ej,ipcartqpωq, @ω P Ω . (2.7)

We will call matrix Hj,i (linear) forward map. The aim of inference is to find a reference
trajectory kref

j , being a realization of kj such that the (measured) observations fit to the
observed variable.

2.3.3 Sequential data assimilation

Sequential data assimilation relies on an evolution model and a forward model to obtain kref
j .

The models run on different time scales. The evolution model is a stochastic difference equation
implying a certain predicted evolution of the system state variable over many small time steps.
The forward model defines a relationship between the reference trajectory (which is to be
found) and the observed data at the observation times.

Evolution model

In context of sequential data assimilation for dynamic processes, it is usually assumed that the
coupling between the measured observations and the system state variable is time-local. That
is, a new observation at time tobs only affects the system state variable for times t ě tobs. In
our application, this is different, since the forward model, i.e. the indicator-dilution theory, is
a non-local operator in time. Therefore, we need an evolution model that allows to do global
updates to the system state variable kj . The probably most simplistic approach to model this
type of global updates is given by the evolution model

kpl`1q

j “ kplq
j `

?
∆τ nplq , l P t0, . . . , Nq ´ 1u , (2.8)

1We use sans serif letters to indicate that a given quantity is a random variable.

46 2 Ensemble Kalman filters for reliability estimation in perfusion inference

Here
´

kp0q

j , . . . , kpNq´1q

j

¯

, is a sequence of random variables of the type given in eq. (2.6) for

time steps l ∆τ . We assume kp0q

j „ N p0, σ0
2Σnq, corresponding to a zero initial guess for

the kernel function with Gaussian noise with a covariance matrix Σn. σ0 P R is a scaling
coefficient. The nplqs are a sequence of independent identically distributed random variables
with npnq : Ω Ñ RNq drawn as nplq „ N p0, Σnq. Σn P RNqˆNq will be chosen using a Gaussian

covariance kernel such that Σn :“
`

σl,l1

˘Nq´1
l,l1“0 with σl,l1 :“ αe´

}τl´τ
l1 }2

2
2`2 and a parametrization

in the scale α P R and the correlation length ` P R.
Analyzing this evolution model, we can state that it can be understood as Euler-Maruyama-

based discretization of the system of stochastic ordinary differential equations

dkj “ dWt , (2.9)

where Wt is a vector of correlated univariate Wiener processes. Moreover, we observe that this
evolution model, in contrast to the standard setting of dynamical processes, now only takes
the role of coupling the time-discrete values in k. This coupling is imposed by the covariance
of the noise term. In fact, as we will see in Section 2.4.5, the correlation length in the Gaussian
covariance kernel will have a regularizing influence on the inferred solution. Note that the choice
of Gaussian noise might lead to a locally negative kernel K, while this kernel is supposed to
be positive. The choice of a better noise distribution is future work.

A rather natural question in context of the proposed application is, whether it would prefer-
able to apply an EnKF-based approach for direct inversion, cf. [ILS13, SS17, SS18] to the
measurement matrix C, avoiding sequential data assimilation. In fact, we prefer sequential
data assimilation, since it allows to treat the given inference problem as a time-dependent
problem. In the real application case of DCE imaging, one objective of researchers is to find
means to effectively control the image capturing process, in terms of a feedback loop. In that
context, it is important to be able to continuously monitor the achieved approximation of the
perfusion information during the image capturing process. Based on that monitoring, one
might be able to select the next observation time or the required quality for the next observa-
tion. It is more natural to achieve this control approach by data assimilation than by direct
inversion.

Forward model

We choose eq. (2.7) as our forward model, i.e. we get the forward model with respect to the
reference trajectory kref

j

cj,i “ Hj,ik
ref
j,i s ` ej,i , i P t1, . . . , Nobsu . (2.10)

The ej,i are sequences of i.i.d. random variables for growing observation time index i following
ej,i „ N p0, σeq, for all i P t1, . . . , Nobsu, with σe P R the observation error variance. Note that
this choice of the distribution of ej,i is a further simplification over the simplification that has
been made in Section 2.3.2. There, we decoupled the observation error from the kernel function
k describing the tissue properties. Here, we further decouple the observation error from the
arterial inflow and make it a purely data-independent error that is furthermore only modeled

2.3 Numerical approach by sequential data assimilation 47

as normally distributed. It is very clear, that this is a very strong simplification. Finding a
much better, maybe imaging device dependent, error is future work.

Due to ∆tobs “ s∆τ , kref
j,i s is the unknown reference trajectory evaluated at observation time

tobs
i .

Assimilation task

To be concise, we here only briefly summarize the general idea of the actual assimilation task
with notation from [RC15]. Further details can be found e.g. in [RC15].

Let πkpi sq

j

pkjq be the probability density function of the random variable kpi sq

j at time tobs
i

for i P t1, . . . , Nobsu. Then, sequential data assimilation computes posterior PDFs

πkpi sq

j

pkj |cj,1:iq , i P t1, . . . , Nobsu ,

i.e. probability density functions of the random variables kpi sq

j with an instance kj conditioned
to the observations cj,1, . . . , cj,i that are instances of cj,1, . . . , cj,i. This is done using an iterative
approach. It is started with πkp0q

j

pkj |cj,1:0q being the PDF of kp0q

j . Then, for a given PDF
πkppi´1q sq

j

pkj |cj,1:i´1q, it iteratively

1. computes the density πkpi sq

j

pkj |cj,1:i´1q and thereby solves a prediction problem for the
given evolution model eq. (2.8),

2. applies Bayes theorem

πkpi sq

j

pkj |cj,1:iq “

πcj,ipcj,i|kjq πkpi sq

j

pkj |cj,1:i´1q

ş

RNq πcj,ipcj,i|kjq πkpi sq

j

pkj |cj,1:i´1qdkj

in an update step to compute πkpi sq

j

pkj |cj,1:iq.

In other words, the idea is to start from knowledge (encoded in πkppi´1q sq

j

pkj |cj,1:i´1q) at an

observation time step tobs
i´1. Then, knowledge for a new observation time step is forecasted /

predicted using only the evolution model eq. (2.8). This forecast is finally corrected using the
information given by observation cj,i. The unknown reference trajectory is ultimately given as
mean of the marginal PDF πkpi sq

j

pkj |cj,1:Nobs
q.

2.3.4 Ensemble Kalman Filter

The EnKF is a Monte-Carlo–type implementation of the above discussed iterative data as-
similation task. Instead of explicitly computing the posterior PDFs πkpi sq

j

pkj |cj,1:i´1q and
πkpi sq

j

pkj |cj,1:iq, the EnKF constructs an ensemble of realizations of random variables repre-
senting these PDFs in an empirical sense. In that context, forecast and analysis ensembles
are distinguished. As we will see, the computation of the forecast ensemble corresponds to

48 2 Ensemble Kalman filters for reliability estimation in perfusion inference

approximating πkpi sq

j

pkj |cj,1:i´1,jq, while the computation of the analysis ensemble corresponds
to the approximation of πkpi sq

j

pkj |cj,1:i,jq.

Shall Ne be the size of the ensembles. Then, the EnKF algorithm starts by drawing Ne

samples k
p0q,1
j , . . . , k

p0q,Ne

j of the (initial) system state according to the PDF of kp0q

j . The
algorithm consists of two main steps which are iteratively done for i P t1, . . . , Nobsu.

Forecast step

In the forecast step, the ensemble is propagated over s steps of the evolution model in eq. (2.8)
to reach the next observation time step tobs

i “ i s ∆τ . To achieve this, realizations nplq,m P RNq

for m P t1, . . . , Neu are drawn i.i.d. from npnq in each of the s steps. Then the propagation
equation reads for n “ 1, . . . , s as

k
pips´1q`lq,m
j “ k

pips´1q`pl´1qq,m
j `

?
∆τ nplq,m, m P t1, . . . , Neu .

The newly generated ensemble is the forecast ensemble
´

kf,m
j

¯Ne

m“1
with kf,m

j :“ ki s,m
j . We

further compute the empirical forecast mean

kf
j :“ 1

Ne

Ne
ÿ

m“1
kf,m

j P RNq (2.11)

and the empirical forecast covariance (matrix)

Σf
kj

:“ 1
Ne ´ 1

Ne
ÿ

m“1

´

kf,m
j ´ kf

j

¯´

kf,m
j ´ kf

j

¯J

P RNqˆNq . (2.12)

Analysis step

In the analysis step, the Kalman filter [K`60, RC15] is applied to the forecast ensemble to
compute an analysis ensemble

´

ka,m
j

¯Ne

m“1
representing the PDF πkpi sq

j

pkj |cj,1:iq, which is con-
ditioned to the new observation cj,i. As part of the Kalman filter, the forward model eq. (2.10)
with kref

j,i s being replaced by kpi sq

j is evaluated. Here, we use a linear forward map Hj,i. More-
over all involved random variables are Gaussian. Therefore, it can be shown that the analysis
ensemble follows a Gaussian distribution, too and thus it can be fully characterized by the
empirical analysis mean ka

j and the empirical analysis covariance Σa
kj

.
Based on this observation, the core idea of the Kalman filter is to compute the empirical

analysis mean as minimization problem

ka
j “ argmin

kjPRNq

1
2

˜

›

›

›
kj ´ kf

j

›

›

›

2
ˆ

Σf
kj

˙´1 ` }Hj,ikj ´ cj,i}
2
σ´1

e

¸

.

2.4 Numerical results 49

Given the linearity of Hj,i, the minimum can be exactly computed as

ka
j “ kf

j ´ Uj,ipHj,ikj ´ cj,iq ,

where Ui,j is the Kalman (update) matrix

Uj,i “ Σ
kf

j
HJ

j,ipHj,iΣf
kj

HJ
j,i ` σeq´1 .

Instead of explicitly computing the empirical analysis mean and covariance (the latter by an
analogous update idea), the analysis part of the Ensemble Kalman Filter (with perturbed
observations) [RC15, Chapter 7] directly updates the forecast ensemble by

ka,m
j “ kf,m

j ´ Uj,ipHj,ik
f,m
j ` ej,i,m ´ cj,iq , m P t1, . . . , Neu ,

where tej,i,mu
Ne

m“1 are realizations of ej,i. If required, empirical versions of the analysis mean
and analysis covariance can be computed analogously to eq. (2.11) and eq. (2.12). Finally, the
next forecast step is initialized with k

pi sq,m
j “ ka,m

j , that is, the analysis ensemble replaces the
system state for tobs

i .

Result

For i “ Nobs the algorithm terminates with an analysis ensemble, representing the pos-
terior PDF πkpNobs¨sq

j

pkj |cj,1:Nobs
q. The reference trajectory is extracted as empirical mean

kj :“ 1
Ne

řNe
m“1 k

pNobs sq,m
j . The (mean) perfusion pj can be derived as pj “ 1

ρj
kj |t“0. Em-

pirical covariances are extracted as discussed before. Moreover, in case cumulative distribution
functions or other probabilistic quantities shall be extracted, a kernel-density estimator (such
as ksdensity in Matlab) is applied to the generated ensemble.

2.4 Numerical results

In this section, we demonstrate the beforehand introduced numerical method for artificial test
data. To this end, we first introduce the source of this test data, which is a Digital Perfusion
Phantom. Then, we study the numerical properties of our method in terms of convergence,
parameter dependence and input dependence in a single-voxel scenario. Finally we solve the
perfusion inference problem for a slice of a full (artificial) DCE imaging brain data set.

2.4.1 Digital Perfusion Phantom

Digital Perfusion Phantoms (DPP) [RPV`11, Pia12, Man] allow to artificially generate DCE
image data for perfusion analysis. Thereby new algorithms can be tested on such data without
the additional constraints of true patient data. Perfusion Phantoms basically solve the forward
problem, which involves to transform perfusion information into contrast agent concentrations.
In our work, we use the Digital Brain Perfusion Phantom package [Man], which is a Matlab
implementation of the model introduced in [RPV`11]. The software provides a radiological

50 2 Ensemble Kalman filters for reliability estimation in perfusion inference

Figure 2.1: The source of our artificial measurements is the Digital Brain Perfusion Phantom
package [Man]. A Matlab implementation of this work is available. It allows to
mark brain regions with reduced and severely reduced perfusion, here shown with
the colors yellow and red. Given this data, artificial DCE imaging data is are
created.

image of a brain. A user interface, see Figure 2.1, allows to mark regions of reduced and strongly
reduced perfusion. It is possible to control the observation snapshot time step size (i.e. ∆tobs) of
the artificial radiological imaging process. The measurement time is T “ 49. The resolution of
the artificially generated data is ND “ p256, 256, 256q. The arterial input function is provided
as discrete evaluations cartpt

input
i q with tinput

i “ 2 i. The Perfusion Phantom package uses a
piecewise cubic spline interpolant through this data as exact cart, see Figure 2.2(a). During
the artificial imaging process, each snapshot (i.e. ci) is written in a separate file. A baseline
for the radiological images is written, too. It contains the measurement data without contrast
agent concentrations. In our examples, we always subtract this baseline data from the artificial
measurements to obtain just the necessary concentration information.

We perform a major part of our numerical tests on a single reference voxel which has been
chosen arbitrarily as p100, 130, 150q. The observation data for that single voxel is stored with
a time step size of ∆tobs “ 0.25. This data is interpolated by a piecewise cubic spline to obtain
measurement data at arbitrary points in time for our initial tests, cf. Figure 2.2(b). Towards
the end of this section, results for a full slice p¨, ¨, 150q of the full data set are discussed.

We start by showing a series of numerical results obtained for given artificial input without
noise. These results will give an insight into the choice of the different parameters of the
method and into the convergence properties of the method. Noisy data is discussed afterwards.

2.4.2 Data assimilation process

Let us first have a look at the evolution of the analysis ensemble during the sequential data
assimilation process. We have chosen an observation time step size of ∆tobs “ 0.25, a quadra-

2.4 Numerical results 51

(a) arterial input function (b) concentration measurement in single voxel

Figure 2.2: We use idealized concentration functions for one tissue voxel in order to test the
implemented numerical method.

ture step size of ∆τ “ 0.0625 (i.e. s “ 4) and an ensemble size of Ne “ 5000. For a meaningful
definition of the (co-)variances, we have to account for the scales of the involved quantities.
By experiments, we found out that the kernel function kj has a magnitude of about 10´3.
Therefore, the scaling α of the covariance matrix Σn should be relative to a standard deviation
of 10´3. With this in mind, we set α “ p10´3q2 0.001. This corresponds to a relative variance
of 0.001. Note that it would be highly desirable to perform a coupled inference of the kernel
function kj and the scaling α. This is considered future work. The correlation length is set to
` “ 2. For the covariance of the initial state kp0q

j , we impose an additional scaling of σ0 “ 100,
accounting for a much larger uncertainty in the initial state. The observation error variance
also needs a problem-adapted scaling. Since the concentration measurements are in the range
of 10, we shift the (co-)variance by a standard deviation of 10. Using a relative variance of
0.0001, we obtain σe “ 102 0.0001.

In Figure 2.3, we show the evolution of the empirical mean ka
j , i.e. the prediction for the

unknown kernel function, for different observation times during the operation of the EnKF.
Note that a scaled evolution of ka

j at t “ 0 corresponds to the (scaled) unknown perfusion
p. Therefore, discussing numerical results for ka

j is equivalent to discussing results for p. The
major information gain for the predicted result is in time interval r10, 20s. This is the time
interval in which the concentration at the arterial inlet grows. Afterwards, the data assimilation
process only gains very little more information and converges towards the final result.

2.4.3 Convergence in the ensemble size

Next, we discuss the convergence of the empirical mean of kj with respect to the ensemble size
Ne. In the following, we will always concentrate on the last analysis ensemble obtained after
assimilating the observation for tobs “ 49. To shorten notation, we skip additional indices,
indicating this and call the empirical mean of this analysis ensemble kj .

Our convergence study with respect to the ensemble size uses the same parameters as in the

52 2 Ensemble Kalman filters for reliability estimation in perfusion inference

Figure 2.3: During the sequential data assimilation process, the analysis ensemble and thereby
the empirical mean of the kernel function gets continuously updated, here shown
for different update time steps.

previous paragraph. However, this time, we change the size of the ensemble. In Figure 2.4(a),
we show the empirical mean kj for ensemble sizes Ne P t20, 64, 512, 4096, 16384u. The conver-
gence in the error of the empirical mean is shown in Figure 2.4(b). Here, we define the solution
for Ne “ 16384 as overkill solution and show convergence in the relative `2 error }kj´koverkill

j }`2
}koverkill

j }`2

towards this solution. The results indicate a convergence order of approximately 1
2 . This is

the expected order of convergence, since we use a Monte Carlo-type estimator. Note that an
ensemble size of about 20, which is often used for Ensemble Kalman Filters, seems not to be
enough in this application. In that case, we observe a highly oscillatory result with a strong
overshooting for the initial peak of the mean estimate (which will be the perfusion estimate).

2.4.4 Convergence in the time sub-steps ∆τ

In the following, we have a look at convergence with respect to the quadrature and evolution
model step size ∆τ . Here, we do not use an overkill solution. To achieve this, we (discretely)
fold the empirical mean kj against the (discretized) arterial input function cart, i.e. we transfer
the prediction for kj into observation space. In observation space, we compare against the
analytically given artificial measurement result c. Our numerical study uses a variation of the
sub-step number s, i.e. we change ∆τ while keeping all other parameters as in Section 2.4.2.

In Figure 2.5(a), we visually compare the results obtained for an increasing number of sub-
steps s (i.e. decreasing ∆τ). The convergence plot in Figure 2.5(b) further shows the error
reduction in the relative `2 norm for decreasing ∆τ if we compare the convolved mean estimate
kj with the real observation data. The results indicate approximately first order convergence.
In fact, parameter ∆τ influences the Euler-Maruyama approximation of the continuous stochas-
tic differential equation eq. (2.9) and the quadrature of the convolution integral. While the
Euler-Maruyama method is known to have halve order convergence, the rectangular rule is con-
vergent of second order for sufficiently smooth integrands. The observed convergence behavior
strongly depends on the dominance of one of the errors (time-integration, quadrature). The

2.4 Numerical results 53

(a) ensemble estimates for kj (b) convergence wrt. overkill solution

Figure 2.4: With growing ensemble size, the empirical estimate for the mean of the response /
kernel function gets more accurate (left) and converges with roughly order 1

2 (right).

observed first order seems to indicate that the quadrature error for the convolution integral
is dominant. Nevertheless, full second order convergence is not achieved. This observation is
clearly a pre-asymptotic and strongly problem-dependent result.

2.4.5 Influence of the correlation length in the system state noise

Our next study shall give an insight into the influence of the system state model, more specifi-
cally the influence of the correlation length ` of the random variable n on the inferred solution.
To study the influence of the correlation length, we keep the parameters as in Section 2.4.2
and apply different correlation lengths ` P t0.125, 0.5, 2u. The results of this numerical study
are given in Figure 2.6. Here, the inferred kernel function kj is shown for different correlation
lengths. For growing correlation length the result gets less noisy. Hence, a larger correlation
length has a regularizing effect on the solution. Since, in general, we seek for smooth solutions,
we always choose ` “ 2.

2.4.6 Influence of the number of observations

Our final test with noise-free model data on a single voxel highlights the influence of a change of
the observation time step size ∆tobs, i.e. a change in the number of observations that are made
during the imaging process. To test this, we take the same parameters as in Section 2.4.2,
but change the observation time step size as ∆tobs P t0.125, 0.25, 0.5, 1.0u while keeping ∆τ
constant. The quantity that we study is the computed probability density function for k|t“0,
hence a scaled version of p. We use the kernel density estimator ksdensity in Matlab to
reconstruct a continuous PDF for the ensemble data.

The results of this study can be seen in Figure 2.7. Here, we make two observations. First,
the mean of the PDF still changes for growing number of measurements, converging towards
a true solution. Second, and more important, we observe a variance reduction if we increase

54 2 Ensemble Kalman filters for reliability estimation in perfusion inference

(a) kj in observation space (b) convergence

Figure 2.5: A smaller time step size for the quadrature / system state model leads to conver-
gence of kj in observation space towards the measurement concentration c.

the number of measurements. This type of information would not be available in classical
inverse approaches for compute perfusion estimation. That is, we can now obtain confidence
information for our solution.

2.4.7 Inference from noisy data
Until now, we considered noise-free input data. Instead, we now discuss the same one-voxel
input as before, but add artificial noise as

cnoisy
j,i “ cj,i ` wj,i , i P t1, . . . , Nobsu ,

where the wj,i are realizations of i.i.d. random variables wj,i : Ω Ñ R, wj,i „ N p0, σwq with
σw P R the variance of the noise.

We use a series of test cases with σw “ 102αrel and αrel P t2´10, 2´8, 2´6, 2´4, 2´2u. Hence,
αrel corresponds to the relative variance with respect to the magnitude of the measurements.
We keep a major part of the parameters from Section 2.4.2. However, we change the fixed
observation error variance σe, to a problem-adapted one, namely, i.e. σe “ σw. Note that in
practice, one would empirically estimate the noise in the measurement data and would set
σe accordingly. Another change concerns the number of samples Ne in the EnKF. As our
experiments showed, the size of the ensemble has to be increased for higher variances. This
is well covered by classical Monte-Carlo theory. Therefore, we set Ne “ 10000 for αrel P

t2´10, 2´8, 2´6u while we use Ne “ 60000 and Ne “ 100000 for αrel “ 2´4 and αrel “ 2´2,
respectively.

In Figure 2.8, we give two examples of noisy inputs for α2
rel “ 0.015625 and α2

rel “ 0.0625. In
the latter case, the original input signal is already severely degenerated. The predicted mean
solutions in observation space cart ˚ kj are also given in Figure 2.8. In fact, the reconstructed
solution is almost not influenced for α2

rel “ 0.015625 and gets a little distorted for stronger
noise. In Figure 2.9, we compare estimates of the PDF for k|t“0 for growing noise in the data.

2.4 Numerical results 55

Figure 2.6: Longer correlation lengths ` impose a higher smoothness on the ensemble estimate.

Figure 2.7: The more observation samples are taken, the more reliable the estimate of the
solution. Hence, the estimated PDF for k|t“0 shows a smaller variance for smaller
observation time steps ∆tobs

.

Since we appropriately account for the noise in the input, the mean is almost identical up to
α2

rel “ 0.015625. For higher relative noise variances, the probability density functions still cover
the general tendency of the results. Note that the variance in the solutions grows for larger
noise in the input. This effect is not primarily caused by the noisy input, but by the imposed
observation error ej,i, which acts here as a regularization for the noisy input. Nonetheless,
as long as the observation error variance is set in the range of the input noise variance, the
variance in the solution correctly represents the variance coming from the noise in the input.

2.4.8 Application problem

We finally apply the beforehand studied method to a full application problem given by the
Digital Brain Perfusion Phantom introduced in Section 2.4. We use the slice p¨, ¨, 150q with
the choice of regions with reduced and severely reduced perfusion as in Figure 2.1. We discuss

56 2 Ensemble Kalman filters for reliability estimation in perfusion inference

(a) (b)

Figure 2.8: Even for stronger noise on the input data the inference of kj is acceptable, as long as
the measurement variance σe is chosen appropriately. Here, we compare the noisy
input cnoisy

j kj in observation space for α2
rel “ 0.015625 (left) and α2

rel “ 0.0625
(right).

a result for a large observation time-step size ∆tobs “ 1.0, a highly resolved quadrature with
∆τ “ 0.0625 and a noise with variance σw “ 102 0.015625. The observation error variance is
adapted as σe “ σw. All other parameters are kept as in Section 2.4.2.

Storage and performance considerations

Storing and computing the ensembles for the discussed test cases is a rather challenging task.
Just considering the analysis ensemble for a single slice, we need to store for each of the
256 ˆ 256 voxels 5000 realizations of discrete kernel functions kj given via Nq “ 785 double
precision values leading to a total storage requirement of

256 ˆ 256 ˆ 5000 ˆ 785 ˆ 8 Bytes « 1834 GBytes .

All our calculations are done in Matlab. We always compute 8 rows of the final 256 ˆ 256
slice at the same time and reuse the random input for each voxel in order to reduce the runtime.
Note that especially sampling from npnq is very computationally demanding. In order to do the
calculations, we need constant access to way more than 64 GBytes of RAM. Due to storage und
memory requirements, we use nodes of the cluster Rhea at Oak Ridge National Lab to compute
the full problem. Each node has 128 GBytes of RAM and a dual Intelő Xeonő E5-2650 CPU
with 16 cores. To compute 8 lines, i.e. results for 8 ˆ 256 “ 2048 voxels, we need about 3 hours
and 15 minutes, noting that Matlab uses approximately 14 cores of the full machine. The total
computing time (with respect to one node of Rhea) is thereby roughly 104 hours or about 4.3
days on a single machine.

Even though this amount of computing time seems to be rather prohibitive for the specific
application case, it is clear that the discussed algorithm is extremely easy to parallelize. Espe-

2.4 Numerical results 57

Figure 2.9: The proposed method is pretty robust with respect to noise. This can be seen,
if we study the estimated probability density functions for k|t“0. With growing
noise variance, the empirical PDF estimate still recovers the mean appropriately.
Extreme noise variances degenerate the result, as expected.

cially, it seems to be very well suited to a parallelization on graphics processing units (GPUs)
or other many-core hardware, as long as the results of the calculation are constantly streamed
out to CPU memory. An appropriate parallel implementation is future work.

(a) Approximated perfusion p (b) Noise-free reference perfusion given by the DPP

Figure 2.10: Our approximation method recovers the reference perfusion result (right) as mean
of the ensemble in the Ensemble Kalman Filter. Both results match well, even
though we introduced a considerable amount of artificial noise.

Quantities of interest

In our application examples, we consider the approximation of probabilistic quantities of in-
terest in connection with the perfusion pj :“ ppkjq “ 1

ρj
kp0q. Besides of the mean pj we are

especially interested in probabilities for the corresponding random variable pj to be in a given

58 2 Ensemble Kalman filters for reliability estimation in perfusion inference

Figure 2.11: The advantage of the proposed method is that we are now also able to compute
probabilistic information for the solution, here shown by plotting the probability
Pppj ă 10q. Hence, the depicted results give the space-dependent probability for
low (ă 10) perfusion.

range. To be more specific, we compute the probabilities

Pppj ă 10q , Pp20 ď pj ă 40q , Pppj ě 50q ,

noting that the underlying perfusion pj lies in the interval r0, 70s in the case of the Digital
Brain Perfusion Phantom data that we consider. These quantities give probabilities for low,
medium and high perfusion in some region of the brain. Given the final analysis ensemble for
kj , it is easy to compute the above quantities by using the kernel density estimator ksdensity.
The latter one can compute a cumulative distribution function (CDF) for each voxel, which is
finally evaluated appropriately.

Discussion of results

An important advantage of the use of a Digital Perfusion Phantom is the existence of a reference
solution to compare with. The DPP software that we use stores the reference solution together
with the other generated data. In Figure 2.10(b), we show the reference solution for our
full application test case. The approximated result of our application example study, i.e. p,
is shown in Figure 2.10(a). As expected from our single-voxel study, the inferred perfusion
matches the exact perfusion result well. Note that this is the case even though we add a
considerable amount of noise on the measurements.

As discussed before, we can use the ensemble-based estimate of the posterior probability
density function to extract a wide range of probabilistic information on the inferred solution.
This is the main result of this work. To exemplify this, we compute space-dependent probabili-
ties for low (Figure 2.11), medium (Figure 2.12(a)) and high (Figure 2.12(b)) perfusion ranges,
cf. Section 2.4.8. In case of Figure 2.11, we e.g. can now easily identify ranges of low perfusion
and even can give a probability for this result.

2.5 Summary 59

(a) Pp20 ď pj ă 40q (b) Pppj ě 50q

Figure 2.12: Based on the results of the EnKF, it is easily possible to identify regions of high
probability to have medium (left) and high (right) perfusion.

In general, we claim that this probability information or derived probabilistic quantities
(variance, percentiles, etc.) can give domain-experts in radiology a much clearer information
on the reliability of the inferred estimates.

2.5 Summary

In this work, we have discussed the use of Ensemble Kalman Filters for sequential data as-
similation in order to infer probabilistic information on (blood) perfusion in tissue for given
measurements from dynamic contrast–enhanced imaging. The deterministic inference of per-
fusion is well-known in the field of radiological imaging. However, to the best of the author’s
knowledge, the new contribution is the approximation of PDFs for the perfusion given (noisy)
measurements. EnKF are well-known in inference for dynamical systems and partial differ-
ential equations with stochastic coefficients. Hence, modeling the dynamic contrast–enhanced
imaging process as sequential data assimilation in a Bayesian context was the main contribu-
tion of the work. Given the ensemble-based approximation of the PDF, we could compute
probabilistic quantities such as probabilities for perfusion parameter ranges.

The new approach was first investigated for a single-voxel example with respect to con-
vergence and parameter influence. Afterwards, it was applied to artificial application data
generated by a Digital Perfusion Phantom, i.e. a model for deriving DCE image data for given
perfusion data. Overall, the effectiveness of the method could be demonstrated, showing em-
pirical convergence results and appropriate approximations of probabilistic information. The
use of realistic patient data, refined problem-adapted covariance kernels, advanced filtering
techniques and an efficient parallel implementation are future work.

60 2 Ensemble Kalman filters for reliability estimation in perfusion inference

Acknowledgements
This work is funded by the Swiss National Science Foundation (SNF) under project number
407540_167186. Furthermore, this research used resources of the Oak Ridge Leadership Com-
puting Facility at the Oak Ridge National Laboratory, which is supported by the Office of
Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.

The author also likes to thank Wolfram Stiller and Christian Weis of the department of Di-
agnostic and Interventional Radiology of the University Medical Center Heidelberg and Holger
Fröning of the Institute of Computer Engineering at University of Heidelberg for fruitful initial
discussions on the application background.

References
[And01] J. L. Anderson. An ensemble adjustment Kalman filter for data assimilation.

Monthly weather review, 129(12):2884–2903, 2001.

[And03] J. L. Anderson. A local least squares framework for ensemble filtering. Monthly
Weather Review, 131(4):634–642, 2003.

[BGKW10] G. Brix, J. Griebel, F. Kiessling, and F. Wenz. Tracer kinetic modelling of tumour
angiogenesis based on dynamic contrast-enhanced CT and MRI measurements.
European journal of nuclear medicine and molecular imaging, 37(1):30–51, 2010.

[ESS15] O. G. Ernst, B. Sprungk, and H.-J. Starkloff. Analysis of the ensemble and poly-
nomial chaos Kalman filters in Bayesian inverse problems. SIAM/ASA Journal on
Uncertainty Quantification, 3(1):823–851, 2015.

[Eve09] G. Evensen. Data assimilation: the ensemble Kalman filter. Springer Science &
Business Media, 2009.

[FKG`11] A. Fieselmann, M. Kowarschik, A. Ganguly, J. Hornegger, and R. Fahrig.
Deconvolution-based CT and MR brain perfusion measurement: theoretical model
revisited and practical implementation details. Journal of Biomedical Imaging,
2011:14, 2011.

[ILS13] M. A. Iglesias, K. J. Law, and A. M. Stuart. Ensemble Kalman methods for inverse
problems. Inverse Problems, 29(4):045001, 2013.

[K`60] R. E. Kalman et al. A new approach to linear filtering and prediction problems.
Journal of basic Engineering, 82(1):35–45, 1960.

[Man] M. Manhart. Digital Brain Perfusion Phantom Documentation. provided on the
data web page of the pattern recognition lab at FAU Erlangen-Nürnberg, Germany
(last check: Feb. 23, 2017).

[MT18] A. J. Majda and X. T. Tong. Performance of ensemble Kalman filters in large
dimensions. Communications on Pure and Applied Mathematics, 71(5):892–937,
2018.

2.5 Summary 61

[NSL16] G. Nævdal, O. Sævareid, and R.-J. Lorentzen. Data assimilation using MRI data.
In Proceedings of the ECCOMAS Congress 2016, 2016.

[ØWC`96] L. Østergaard, R. M. Weisskoff, D. A. Chesler, C. Gyldensted, and B. R. Rosen.
High resolution measurement of cerebral blood flow using intravascular tracer bo-
lus passages. Part I: Mathematical approach and statistical analysis. Magnetic
resonance in medicine, 36(5):715–725, 1996.

[Pia12] O. S. Pianykh. Digital perfusion phantoms for visual perfusion validation. American
Journal of Roentgenology, 199(3):627–634, 2012.

[PRM`06] G. J. Parker, C. Roberts, A. Macdonald, G. A. Buonaccorsi, S. Cheung, D. L.
Buckley, A. Jackson, Y. Watson, K. Davies, and G. C. Jayson. Experimentally-
derived functional form for a population-averaged high-temporal-resolution arterial
input function for dynamic contrast-enhanced mri. Magnetic resonance in medicine,
56(5):993–1000, 2006.

[RC13] S. Reich and C. J. Cotter. Ensemble filter techniques for intermittent data assimi-
lation. Large Scale Inverse Problems. Computational Methods and Applications in
the Earth Sciences, 13:91–134, 2013.

[RC15] S. Reich and C. Cotter. Probabilistic forecasting and Bayesian data assimilation.
Cambridge University Press, 2015.

[Rei13] S. Reich. A nonparametric ensemble transform method for Bayesian inference.
SIAM Journal on Scientific Computing, 35(4):A2013–A2024, 2013.

[RPV`11] A. J. Riordan, M. Prokop, M. A. Viergever, J. W. Dankbaar, E. J. Smit, and H. W.
de Jong. Validation of CT brain perfusion methods using a realistic dynamic head
phantom. Medical physics, 38(6):3212–3221, 2011.

[Sou14] S. Sourbron. A tracer-kinetic field theory for medical imaging. IEEE transactions
on medical imaging, 33(4):935–946, 2014.

[SS17] C. Schillings and A. M. Stuart. Analysis of the ensemble Kalman filter for inverse
problems. SIAM Journal on Numerical Analysis, 55(3):1264–1290, 2017.

[SS18] C. Schillings and A. M. Stuart. Convergence analysis of ensemble Kalman inversion:
the linear, noisy case. Applicable Analysis. An International Journal, 97(1):107–123,
2018.

[Stu10] A. M. Stuart. Inverse problems: a Bayesian perspective. Acta Numerica,
19:451–559, 2010.

[TAB`03] M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker.
Ensemble square root filters. Monthly Weather Review, 131(7):1485–1490, 2003.

[Tof97] P. S. Tofts. Modeling tracer kinetics in dynamic Gd-DTPA MR imaging. Journal
of Magnetic Resonance Imaging, 7(1):91–101, 1997.

62 2 Ensemble Kalman filters for reliability estimation in perfusion inference

[Ton18] X. T. Tong. Performance Analysis of Local Ensemble Kalman Filter. Journal of
Nonlinear Science, 28(4):1397–1442, 2018.

[ZZH09] F. Zhang, M. Zhang, and J. A. Hansen. Coupling ensemble Kalman filter with
four-dimensional variational data assimilation. Advances in Atmospheric Sciences,
26(1):1–8, 2009.

3 Subspace correction methods in algebraic
multi-level frames

3.1 Introduction

The solution of large sparse linear systems is the dominant computational part of many solvers
for partial differential equations (PDEs). Multigrid solvers are optimal problem-size indepen-
dent iterative solvers for such systems. Nevertheless, multigrid solvers tend to have limited
parallel scalability on extreme-scale high performance computing (HPC) clusters [BFG`12].
Moreover, next generation Exascale clusters are expected to have a growing number of (hard-
ware) failures [CGG`14]. These issues require us to develop new optimal-complexity linear
solvers that are scalable and resilient.

Randomized subspace correction iterative solvers for multi-level frames, cf. [GO12], give
rise to mesh-width independent solvers for e.g. elliptic problems. The randomized, greedy-type
solution algorithm from [GO12] is error-resilient by construction and might expose a high grade
of parallelism by some suitable extension. However, it has been only discussed for model-type
problems, since knowledge of the geometric structure of the discretized problem geometry is
needed for the multi-level construction.

To easily solve problems on complex geometries, we introduce a purely algebraic multi-
level construction approach. The multi-level construction is based on classical (Ruge-Stüben)
algebraic multigrid (AMG) [Stü01, RS86]. Projections between grid levels are replaced by
algebraic prolongations and restrictions, while the different levels are generated by standard
AMG coarsening. The solution of the resulting algebraic multi-level frame linear system by a
Gauss-Seidel iterative method is equivalent to some algebraic multigrid method with Gauss-
Seidel smoother. Moreover, we construct a new randomized greedy-type algebraic multi-level
method by applying randomized greedy subspace correction techniques from [GO12] to the
algebraic multi-level frame system.

Numerical results will be given, showing that the new method matches the geometry-depen-
dent solver results from [GO12] for equivalent complex-geometry elliptic problems discretized
by linear finite elements. The purely algebraic construction makes the proposed method an
optimal candidate for general-purpose linear solver libraries. Resilience and potential massive
parallelism might be influencal for future linear solver developments in Exascale computing.

In Section 3.2, we discuss related work. Section 3.3 reviews standard (geometric) multi-level
frames with iterative solvers and subspace correction schemes. Section 3.4 introduces the new
algebraic multi-level frames covering the necessary AMG background. Numerical results are
given in Section 3.5. Section 3.6 concludes this study with a short outlook.

63

64 3 Subspace correction methods in algebraic multi-level frames

3.2 Related work

Theory and numerical treatment of the so-called multi-level generating system for (elliptic)
PDEs has been first discussed in [Gri93, Gri94] and a series on follow-up studies [GO12, GO93,
GO95b, GHO15]. In the generating system approach, a basis for a fixed Galerkin finite element
discretization level is replaced by a generating system of multi-level basis functions. Equiv-
alence of the application of standard iterative solvers to the resulting multi-level generating
system and optimal-complexity multi-level solvers on single-level discretizations has been in-
tensively discussed in [Gri93, Gri94]. More recently, multi-level generating systems have been
reconsidered as multi-level frames [DFR`04, HSS08], accounting for the close connection to
wavelet-based techniques [Dah97]. Many of these approaches can be also re-interpreted as
additive or multiplicative Schwarz methods [GO12, GO95a].

The application of more sophisticated iterative solvers to multi-level frame or generating
system discretizations naturally leads to new classes of multi-grid/-level type algorithms. In
[GO12, The10], the Gauss-Southwell method [Sou40] has been applied in this context, giving
rise to a new greedy-type multi-level method. The new method shows problem-size independent
convergence with a high potential for robustness and problem-adaptivity. Moreover, a preced-
ing randomized subspace selection process leads to a randomized iterative subspace correction
technique with optimal convergence. This randomized iterative subspace correction technique
has a close relationship to randomized (block) Kaczmarz iterative methods [ZF13, OZ] and
randomized coordinate descent methods [Nes12, BT13, Mai13], which are known from large-
scale optimization. Another related field are asynchronous iteration techniques [FS00]. These
techniques provide a theoretical and practical framework for iterative methods that allow for
the re-use of iteration results from several previous steps. Indeed, they allow to define asyn-
chronous update steps in a single iterative process. Therefore, recent applications of asyn-
chronous iterations are scalable and hardware-aware iterative solvers and multigrid smoothers
[ATG`12, ATDH13].

Randomized and asynchronous iterative methods promise to overcome resilience issues, which
are expected to occur for HPC clusters of growing size [CGG`14]. While iterative methods
are generally well-known to be robust for a certain class of hardware- or software-induced
errors, resilient multigrid methods are still subject of current research [CdSBS12, HGRW15].
Scalability of multigrid methods and smoothers might also be improved by randomized and
asynchronous iterative methods. Here, recent studies, such as [BFG`12], suggest a scalability
bottleneck for standard smoothers on large-scale HPC systems. In addition, problem-adapted
multigrid techniques such as semi-coarsening [DIR92] and line smoothers [OGWW98] have been
proposed before. They require some geometric knowledge of the problem. In contrast, purely
algebraic greedy-type approaches on multi-level frames promise to deliver optimal problem-
dependent iterative traversal strategies that go across all available discretization levels. These
greedy approaches might therefore lead to fast convergence for a much wider class of problems.

The algebraic or matrix-dependent construction of multi-level or multigrid methods is at-
tractive for optimal-complexity black-box linear algebra libraries. A review of these methods
is given in [Stü01]. More recently, two techniques, namely classical Ruge-Stüben AMG [RS86]
with further developments e.g. in [GMOS06, Met13] and (smoothed) aggregation-based AMG
[VMB96] are in main use. While classical AMG constructs hierarchies of variables by reusing a
subset of the variables from a fine level on the next coarser level, aggregation-based techniques

3.3 Multi-level frame systems and their iterative solution 65

construct new variables on a coarser level by replacing a set of fine grid variables. Aggregation-
based techniques tend to be easier to implement and parallelize. On the other hand, classical
AMG is more robust.

To the best of our knowledge, the only known connection between AMG and frame-based
constructions has been discussed in the partially unpublished work [Kie01, GK01, GKK03],
where so-called AMGlets, thus algebraically constructed wavelets, are considered. AMGlets
primarily aim at generalizing basis function constructions for some classes of differential oper-
ators, while the present work focuses on geometry-independent optimal solvers. Greedy-based
techniques have been discussed for AMG with respect to the construction of the multigrid
hierarchy [MS07], but not for smoothers, so far. Therefore, we argue that the introduction
of an AMG-based multi-level frame technique is new. Moreover, by transferring random-
ized subspace correction methods to AMG, we introduce a new class of resilient, scalable and
problem-adapted algebraic multi-level methods.

3.3 Multi-level frame systems and their iterative solution

This section introduces the original (geometric) multi-level frame construction. A short review
of multi-level frames for the solution of elliptic PDEs is given. Some knowledge of the structure
of the resulting linear system is collected. Finally, properties of iterative linear solvers for multi-
level frame systems are summarized.

3.3.1 Multi-level frames for the solution of elliptic PDEs

We closely follow [GO12, HSS08] for the introduction of multi-level frame discretizations of
elliptic PDEs.

For a separable Hilbert space H, its dual space H1 and the duality product ă ¨, ¨ ą on
pH, H1q, we can introduce a frame for H as the countable collection Φ “ tφi : i P ∆u Ă H with

C}f}2
H1 ď

ÿ

iP∆
|xf, φiy|2 ď D}f}2

H1 , for all f P H1 .

Let Ω Ă Rt2,3u be a piecewise linearly bounded domain. As a model problem, we aim at
solving the elliptic partial differential equation

´∆u “ g in Ω ,

u “ 0 on BΩ ,

with u, g : Ω Ñ R, by a Galerkin approach. We therefore choose H “ H1
0 pΩq and introduce the

usual bilinear form
apu, vq “

ż

Ω
∇u ¨ ∇v dx, a : H ˆ H Ñ R

and the corresponding linear functional

F pvq “

ż

Ω
gv dx, F P H1 .

66 3 Subspace correction methods in algebraic multi-level frames

For a standard linear finite element discretization, we introduce an appropriate triangulation
or partition Tl, l ě 0 of Ω with element sizes h « 2´l. Then,

Vl :“ spantϕl,k|k P ∆lu

is the finite-dimensional subspace of linear Lagrange finite element basis functions over Tl.
Finally, we have to solve the linear system

Alul “ fl

with
Al “ pal;k,k1qk,k1 , al;k,k1 :“ apϕl,k, ϕl,k1q and fl;k “ F pϕl,kq

in order to get an approximation for the given PDE in Vl.

For a multi-level frame approximation, we instead introduce the sequence of nested subspaces

V0 Ă V1 Ă . . . Ă Vl Ă . . . Ă L2pΩq

for nested triangulations. For geometric multi-level frames, the coarsest subspace V0 is usually
expected to resolve the boundary exactly, which might be a strong limitation.

The objective of multi-level frames is the approximation of the PDE as in a multi-resolution
analysis. That is, we introduce the (countable) collection

Φ “ tϕl,k|k P ∆l, l P N0u ,

for which we further assume each function ϕl,k to be normalized with respect to the H1pΩq-
norm. Following [HSS08, Theorem 5], this collection defines a frame in H1pΩq. By replacing
the standard finite element basis with the (finite) collection or generating system

ΦL “ tϕl,k|k P ∆l, l P t0, . . . , Luu

of maximum level L, cf. [GO12], we are able to introduce a multi-level discretization on level
L, with a new linear system

ĀLūL “ f̄L . (3.1)

Here, the system matrix is composed of matrix blocks as

ĀL “
`

Al,l1

˘

1ďl,l1ďL
, Al,l1 “

`

al,l1;k,k1

˘

kP∆l,k1P∆l1
, al,l1;k,k1 “ apϕl,k, ϕl1,k1q

and the right-hand side is given as

f̄L “ pflq1ďlďL , fl “ pfl;kqkP∆l
, fl;k “ F pϕl,kq .

By construction, the matrix of the multi-level frame system (3.1) is singular. However,
cf. [HSS08], the right-hand side lies in the image of the multi-level system matrix. For such
problems, Krylov subspace solvers converge to a (non-unique) solution vector ūL. The final
unique solution on level L is constructed by projection on the solution space VL.

3.3 Multi-level frame systems and their iterative solution 67

Algorithm 2 Gauss-Seidel method

Require: A P RNˆN , b P RN , xinit P RN , Niter

1: function GaussSeidel
2: xp0q :“ xinit

3: for n P t0, . . . , Niter ´ 1u do
4: for i P t1, . . . , Nu do
5: x

pn`1q

i :“ 1
aii

´

bi ´
ři´1

j“1 aijx
pn`1q

j ´
řN

j“i`1 aijx
pnq

j

¯

6: return xpNiterq

3.3.2 Structure of the multi-level system

In [Gri93, The10], we learned that the multi-level system (3.1) has some specific structure. We
can easily rewrite it in terms of the standard finite element stiffness matrix on level L and
appropriate prolongation and restriction operators Pl and Rl that transfer functions between
the different approximation spaces Vl as

Pl : Vl Ñ Vl`1 and Rl : Vl Ñ Vl´1 .

In the following, these linear operators are understood as matrices with respect to the appro-
priate basis of the individual level. For the standard multi-level frame construction, Pl and Rl

are chosen as in an appropriate standard geometric multigrid method. We also use the more
general notation P l`1

l :“ Pl and P l´1
l :“ Rl.

The reformulation of the multi-level problem (3.1) further involves to introduce the transfer
matrices

SL :“

»

—

—

—

—

—

–

P 0
L

P 1
L
...

P L´1
L

P L
L

fi

ffi

ffi

ffi

ffi

ffi

fl

, SL :“
“

P L
0 P L

1 . . . P L
L´1P L

L

‰

with concatenated restriction operators P l
L “ P l

l`1 ¨ . . . ¨ P L´1
L and P L

L “ IL the identity matrix
on level L. We can then rewrite (3.1) as

ĀLūL “ SLALSLūL “ SLfL “ f̄L . (3.2)

A solution on level L can be derived from the multi-level solution ūL by

uL “ SLūL .

3.3.3 Iterative solvers on multi-level frame systems

Following [Gri94], the iterative solution of the multi-level system (3.1) for a maximum level of
L corresponds to the solution of the standard single-level finite element problem on level L by
a sophisticated, typically optimally preconditioned, iterative solver.

Solving the system (3.1) by a Jacobi-preconditioned conjugate gradient iterative solver cor-

68 3 Subspace correction methods in algebraic multi-level frames

Algorithm 3 Gauss-Southwell method

Require: A P RNˆN , b P RN , xinit P RN , Niter

1: function GaussSouthwell
2: xp0q :“ xinit

3: for n1 P t0, . . . , NNiter ´ 1u do
4: rpn1q :“ b ´ Axpn1q

5: i‹ :“ argmax
iPt1,...,Nu

ˇ

ˇ

ˇ
r

pn1q

i

ˇ

ˇ

ˇ

6: x
pn1`1q

i‹ :“ 1
ai‹i‹

´

bi‹ ´
řN

j“1,j‰i‹ ai‹jx
pn1q

j

¯

7: return xpNNiterq

responds to a BPX-preconditioned CG solver for the standard problem. Furthermore, the
standard Gauss-Seidel iteration for the linear system Ax “ b, A P RNˆN , which is given in
Algorithm 2, is equivalent to some standard geometric multigrid V-cycle with Gauss-Seidel
smoother [Gri94, GO12].

In [Sou40], a greedy version of the Gauss-Seidel method was introduced. It is called Gauss-
Southwell method. For a given iterate xpn1q, it computes the residual rpn1q “ b ´ Axpn1q. Here,
it picks the variable index i‹ with maximum absolute residual

i‹ :“ argmax
iPt1,...,Nu

ˇ

ˇ

ˇ
r

pn1q

i

ˇ

ˇ

ˇ
.

Then, a correction step is applied such that we have a zero residual for variable x
pn1`1q

i‹ in the
next iteration. Algorithm 3 summarizes the Gauss-Southwell method.

Since the Gauss-Southwell method is not well-known, we include a theoretical convergence
result in our discussion. In [GO12], theory of iterative subspace correction schemes based
on stable space splittings is used to show a theoretical relative error reduction result for the
Gauss-Southwell method in case of the solution of variational problems. We here use a remark
in [GO12] that allows to simplify and apply the given result to Algorithm 3 with the requirement
on A to be a symmetric positive definite matrix. Then we get the relative error reduction in
the energy norm as

}x ´ xpn1q}2
A ď

´

1 ´
λminpAq

trpAq

¯n1

}x ´ xinit}
2
A

ď

´

1 ´ 1
NκpAq

¯n1

}x ´ xinit}
2
A , for all n1 ě 1 ,

with κpAq the classical spectral condition number of the system matrix A, λminpAq its smallest
eingenvalue, trpAq the trace, and x the exact solution of the linear system Ax “ b.

From a computational point of view, [The10] gives an up to Oplog Nq complexity technique
for one single step of the Gauss-Southwell method. A total of N of these one-variable-update
steps is usually considered as one iteration, cf. Algorithm 3. In [GO12] and [The10], it is shown
empirically that an iterative solution of the multi-level frame system by the Gauss-Southwell
method is at least as fast as the Gauss-Seidel method, in terms of iterations. In many cases,

3.3 Multi-level frame systems and their iterative solution 69

Algorithm 4 k-random block-Gauss-Seidel method

Require: A P RNˆN , b P RN , xinit P RN , Niter, k
1: function kRandomBlockGaussSeidel
2: xp0q :“ xinit

3: for n1 P t0, . . . , NNiter ´ 1u do
4: rpn1q :“ b ´ Axpn1q

5: I :“ uniformRandomSubset pk, t1, . . . , Nuq

6: i‹ :“ argmax
iPI

ˇ

ˇ

ˇ
r

pn1q

i

ˇ

ˇ

ˇ

7: x
pn1`1q

i‹ :“ 1
ai‹i‹

´

bi‹ ´
řN

j“1,j‰i‹ ai‹jx
pn1q

j

¯

8: return xpNNiterq

the Gauss-Southwell algorithm clearly outperforms the Gauss-Seidel method.
Another approach discussed in [GO12] is a modification of the Gauss-Southwell method. The

modified approach randomly picks a new variable index instead of optimizing over all variables.
We call this approach random Gauss-Seidel method and assume an equal distribution over all
variables. By restricting theoretical results from [GO12] to the case of linear systems with
symmetric positive definite system matrix, we can give the expected relative error reduction
for the random Gauss-Seidel method as

E
´

}x ´ xpn1q}2
A

¯

ď

´

1 ´
λminpAq

trpAq

¯n1

}x ´ xinit}
2
A

ď

´

1 ´ 1
NκpAq

¯n1

}x ´ xinit}
2
A , for all n1 ě 1 ,

Numerical results in [GO12] show similar (optimal) solution performance for the multi-level
frame system, in terms of asymptotic complexity, but a larger constant.

This limitation is removed by an alternative approach discussed in [GO12], which we call
k-random block-Gauss-Seidel method. It randomly picks k variables and performs the greedy
Gauss-Southwell-type correction on that variable subset, cf. Algorithm 4. In [GO12] and [OZ]
a theoretical error reduction result is given for a slightly modified version of Algorithm 4. The
modified algorithm updates all randomly chosen variables in subset I at once, in an additive
Schwarz correction fashion. Therefore, the optimization step is neglected. For the case of a
symmetric positive definite system matrix A, the theoretical error reduction is in this case

}x ´ xpn1q}2
A ď

´

1 ´ k
NκpAq

¯n1

}x ´ xinit}
2
A , for all n1 ě 1 .

Coming back to the greedy optimization setting of Algorithm 4, [GO12] shows numerical
results for for the k-random block-Gauss-Seidel method applied to a multi-level frame dis-
cretization of an elliptic problem. These results suggest that the k-random block-Gauss-Seidel
method outperforms the standard Gauss-Seidel method for k ě 3. Note that for k “ 1,
Algorithm 4 is identical to the random Gauss-Seidel method.

70 3 Subspace correction methods in algebraic multi-level frames

3.4 Algebraic multi-level frames

In our new purely algebraic approach, we aim at solving general linear systems of type

Ax “ b

with A P RNˆN and x, b P RN by a multi-level method. We further require A to be an M-
matrix, to be able to apply classical AMG in its original form. Our aim is then to introduce an
algebraically constructed variable hierarchy D0 Ă D1 Ă . . . Ă DL with DL :“ t1, . . . , Nu. This
hierarchy and corresponding interpolation and restriction transfer operators will give rise to the
algebraic multi-level system. It will be based on the structure considerations from Section 3.3.2.

3.4.1 Algebraic coarsening and transfer operators

As motivated before, we use coarse level selection techniques and prolongation/restriction op-
erators from classical Ruge-Stüben AMG. Therefore, we give a brief review of the necessary
basic facts from algebraic multigrid, cf. [TS01, Appendix A].

In AMG, a multigrid hierarchy is constructed from the structure and entries of the underlying
system matrix. Geometric properties are ignored. Notation usually follows graph theory by
identifying variables as graph nodes or points and non-zero non-diagonal entries in the system
matrix as weighted edges between these nodes.

Let A P RNˆN be a given M-matrix that is a stiffness or system matrix on (the finest)
level L. Each variable then corresponds to one index in an index set DL :“ t1, . . . , Nu.
Variables on coarser levels of the (algebraic) multigrid hierarchy are collected in subsets Dl

with D0 Ă D1 Ă . . . Ă DL. Classical Ruge-Stüben AMG classifies variables on each level
0 ď l ă L into disjoint sets of coarse grid variables C l and fine grid variables F l, such that
Dl “ C l Ÿ F l. The coarse grid variables are reused on the next coarser level, i.e. Dl´1 :“ C l.

To formulate an algorithm for the choice of fine and coarse grid points, – we call this choice
C/F splitting – we need some further notation. The neighborhood of a variable i P Dl is given
by

N l
i :“

!

j P Dl
ˇ

ˇ

ˇ
j ‰ i, al

ij ‰ 0
)

,

where the al
ij are the matrix entries of the (subsequently constructed) coarse grid operator on

level l. A variable i is strongly negatively coupled to a variable j if we have the relation

´al
ij ě εstr max

k
|al

ik|

for a given, fixed 0 ă εstr ă 1. We collect these variables in

Sl
i :“

!

j P N l
i

ˇ

ˇ

ˇ
i strongly negatively coupled to j

)

and further define Sl
i
J :“

j P Dl

ˇ

ˇ i P Sl
j

(

. Algorithm 6 then summarizes the standard coars-
ening or C/F splitting algorithm of Ruge-Stüben AMG, cf. [TS01, Appendix A].

Next, we consider the algebraic construction of prolongation and restriction operators. In
difference to the geometric case, prolongation operators P l`1

l P R|Dl`1|ˆ|Dl| from algebraic

3.4 Algebraic multi-level frames 71

Algorithm 5 Standard coarsening algorithm

Require: level l, Dl, Sl, SlJ

1: function AMGstandardCoarsening
2: F l :“ H, C l :“ H, U l :“ Dl

3: for i P U l do
4: λl

i :“
ˇ

ˇ

ˇ
Sl

i
J

X U l
ˇ

ˇ

ˇ
` 2

ˇ

ˇ

ˇ
Sl

i
J

X F l
ˇ

ˇ

ˇ

5: while Di s.th. λl
i ‰ 0 do

6: find imax :“ argmaxi λl
i

7: C l :“ C l Y timaxu

8: U l :“ U lztimaxu

9: for j P

´

Sl
i
J

X U l
¯

do
10: F l :“ F l Y tju

11: U l :“ U lztju

12: for i P U l do
13: λl

i :“
ˇ

ˇ

ˇ
Sl

i
J

X U l
ˇ

ˇ

ˇ
` 2

ˇ

ˇ

ˇ
Sl

i
J

X F l
ˇ

ˇ

ˇ

14: return C l, F l

multigrid are matrices by definition. As usual, we further assume P l
l`1 “ P l`1

l

J, that is,
restriction matrices are constructed from given prolongation matrices. Therefore, it is enough
just to define prolongation, which is also called interpolation in AMG. Here, we have further
notation

C l
i :“ C l X N l

i , F l
i :“ F i X N l

i , C̃ l
i :“ C l X Sl

i, F̃ l
i :“ F l X Sl

i .

For the so-called direct interpolation, interpolation matrices are constructed as follows: Coarse
grid variable are identically transferred form coarse to fine grid. However, fine grid variables
el

i, i P F l have to be interpolated appropriately. This is done using the set of interpolatory
variables I l

i :“ C̃ l
i that are all strongly connected coarse grid variables. The interpolation rule

of direct interpolation is then given by

el
i “

ÿ

jPIl
i

wl
ijel

j , wl
ij “ ´αl

i

al
ij

al
ii

, αl
i “

ř

kPN l
i

al
ik

ř

jPIl
i
al

ij

.

Standard interpolation additionally considers strong connections between fine grid nodes. To
this end, the original (coarse grid) operator matrix Al is expanded to a matrix Âl, such that
we replace for each given fine grid variable i P F l, the variable j P F̃ l

i as

ej ÝÑ
ÿ

kPN l
j

al
jkel

k{al
jj .

The new set of interpolatory variables is Î l
i “ C̃ l

i Yp
Ť

jPF̃ l
i

C̃ l
jq. Standard interpolation is finally

constructed by applying direct interpolation to the extended matrix Âl.

72 3 Subspace correction methods in algebraic multi-level frames

In some cases, an additional Jacobi smoothing step is executed on the system matrix, leading
to the so-called Jacobi interpolation, cf. [TS01, Appendix A]. Usually, truncation is applied to
interpolation or prolongation matrices, in order to reduce the number of non-zero entries of the
system matrix on the next coarser level. Truncation removes matrix entries beyond a relative
threshold of εtr.

3.4.2 Algebraic multi-level system

Let us remember our intention to solve the linear system

Ax “ b , (3.3)

with A P RNˆN an M-matrix and b P RN an appropriate right-hand side. We can now
use Algorithm 6 to introduce a hierarchy D0 Ă D1 Ă . . . Ă DL of variable indices, with
DL “ t1, . . . , Nu the variable index set of the original linear system (3.3) and

Dl “ C l Ÿ F l, Dl´1 :“ C l for all l P t1, . . . , Lu

the splitting into coarse and fine grid variables as in AMG. We furthermore introduce the same
interpolation or prolongation operators P l`1

l P R|Dl`1|ˆ|Dl| and restriction operators P l
l`1 as

in AMG. Depending on the given linear system, we might use direct interpolation, standard
interpolation, Jacobi interpolation or combinations of these. We now construct an algebraic
multi-level system using algebraic transfer matrices

SL :“

»

—

—

—

—

—

–

P0
L

P1
L
...

PL´1
L

PL
L

fi

ffi

ffi

ffi

ffi

ffi

fl

, SL :“
“

PL
0 PL

1 . . . PL
L´1PL

L

‰

.

The algebraic multi-level system is then given by

SLASLx̄ “: Āx̄ “ b̄ :“ SLb , (3.4)

with

Ā P RN̄ˆN̄ , x̄, b̄ P RN̄ , N̄ “

L
ÿ

l“0
|Dl| .

As in the standard multi-level frame case, this system is not uniquely solvable. However, a
non-unique solution x̄ can be projected back to a unique solution of the original system (3.3)
by

x “ SLx̄L .

3.4.3 Performance and complexity considerations

By construction, the algebraic multi-level linear system is larger than the original linear system
(3.3). This increases the complexity of linear solvers that are applied to the multi-level system,

3.5 Numerical results 73

Figure 3.1: Visualization of the triangulated domain (left) and the solution field of the discussed
model problem (right).

if we express the complexity in terms of the number of unknowns N of (3.3). For frame methods
based on a geometric construction, it is usually possible to show that the overall complexity
of the resulting iterative method stays the same, if the number of degrees of freedom of the
subsequent subspaces scales like a geometric sequence. In contrast, the complexity of algebraic
multigrid methods is often formalized in the so-called operator complexity that describes the
quotient between the total number of non-zeros for all matrixes on all levels and the number of
non-zeros of the system matrix on the finest level. For efficiency reasons, an operator complexity
of up to two is usually expected. It is subject of future research to map the knowledge on
the operator complexity in AMG to the overall complexity of the algebraic multi-level frame
approach.

In real applications, optimized greedy-type solvers and improved scalability in paralleliza-
tions are expected to improve the measured runtime a lot. Therefore, even though the total
complexity might be affected by the multi-level approach, a clear overall runtime improvement
over standard AMG is expected for a highly optimized parallel algebraic multi-level frame
solver. Such a solver is future work.

Numerical results in this article reflect a feasibility study of the proposed approach. There-
fore runtime comparisons are also considered future work. Moreover, it might be possible to
reduce the overall computational complexity and runtime by new on-the-fly construction and
compression techniques in the future.

3.5 Numerical results

We study the solution properties of the iterative methods from Section 3.3.3 applied to the new
algebraic multi-level frame construction. The model problem considered here is the Poisson

74 3 Subspace correction methods in algebraic multi-level frames

Figure 3.2: Relative residual decay for the solution of the algebraic multi-level linear system by
a Jacobi-preconditioned CG method (left) and by the Gauss-Seidel method (right)
for different resolution levels L.

problem

´∆u “ 1 in Ω ,

u “ 0 on BΩ

on the complex geometry Ω shown in Figure 3.1. It is the unit square with five circular holes.
The model problem is discretized by first-order finite elements. For our convergence studies,

we define resolution levels L such that the triangulation TL has a maximum triangle size of
hmax “ 2´L. Triangulation and stiffness matrix assembly is done by COMSOL. Figure 3.1
shows on the left-hand side a triangulation for level L “ 6. Stiffness matrices and load vec-
tors were extracted using the COMSOL LiveLink for MATLAB extension and the command
mphmatrix. We use eliminated matrices and load vectors, thus potential null spaces in the
original stiffness matrix were removed by COMSOL, beforehand. The algebraic multi-level
system is constructed in MATLAB.

In our MATLAB-based numerical studies, we iteratively solve the algebraic multi-level frame
system up to a normalized residual norm of 10´9. Normalization is done with the norm of the
right-hand side load vector. The initial guess for the solution is a random vector. C/F splitting
with strength parameter εstr “ 0.25 and standard interpolation with an additional Jacobi
interpolation step and truncation (εtr “ 0.25) is applied. The algebraic multigrid hierarchy
has been coarsened until a maximum of 10 coarse grid variables was left.

Remember that the model problem is given on a complex geometry. Here, a standard (non-
algebraic) multi-level frame construction would require a considerable effort to construct special
problem-dependent coarsening, prolongations and restrictions. It might be even necessary to
exactly resolve the boundary on the coarsest grid. In contrast, our algebraic approach works
without any modification.

Figure 3.2 shows on the left-hand side the residual decay for an iterative solution of the

3.5 Numerical results 75

Figure 3.3: Relative residual decay for the solution of the algebraic multi-level linear system by
the Gauss-Southwell method (left) and by the random Gauss-Seidel method (right)
for different resolution levels L.

algebraic multi-level system by a Jacobi-preconditioned CG solver. This is equivalent to an
algebraic-type BPX preconditioned solve for the standard finite element problem. A small,
problem-size dependent increase in the number of iterations is visible. It is expected to stagnate
for lager problems sizes. On the right-hand side of the same figure, the Gauss-Seidel iterative
solver is used to solve the multi-level system. Here, optimal problem-independent convergence
is shown. The method is equivalent to some algebraic multigrid method with Gauss-Seidel
smoother. The Gauss-Seidel results match the results given in [GO12] for the geometric multi-
level frame construction.

Results for the Gauss-Southwell iterative method, applied to the algebraic multi-level sys-
tem, are given on the left-hand side of Figure 3.3. Remember that a single Gauss-Southwell
step corrects a single variable. Therefore, we here denote N̄ correction steps as a single iter-
ation of the Gauss-Southwell method. Following [The10], one such iteration can be computed
with a computational complexity of OpN̄ log N̄q. Optimal problem-independent convergence
is achieved. Moreover, the number of iterations is only half of the number of Gauss-Seidel
iterations.

The right-hand side of Figure 3.3 gives convergence results for the random Gauss-Seidel
method with the same definition of an iteration as in the Gauss-Southwell case. Here again,
problem-size independent convergence is achieved. Note that this method performs corrections
steps in a purely random ordering. Therefore, this approach is resilient by construction. The
random Gauss-Seidel method needs about five times the amount of iterations of the Gauss-
Southwell method and about 2.5 times the number of iterations of the standard Gauss-Seidel
method. This relation roughly holds across all levels. All results shown in Figure 3.3 match
convergence results from [GO12] in a qualitative way.

Finally, we compare the k-random block-Gauss-Seidel method for different block sizes k with
the standard Gauss-Seidel method and the Gauss-Southwell method, cf. Figure 3.4. This is
done for a fixed resolution level L “ 7. Our results qualitatively match those in [GO12].

76 3 Subspace correction methods in algebraic multi-level frames

Figure 3.4: Comparison of the different relative residual decays for a complex geometry Poisson
problem on level L “ 7, solved by the Gauss-Seidel method, the Gauss-Southwell
method and the k-random block-Gauss-Seidel method.

For k ě 3, the k-random block-Gauss-Seidel method performs at least as good as the Gauss-
Seidel method, i.e. an algebraic multigrid method with Gauss-Seidel smoother in the standard
formulation. In case of growing k, the necessary number of iterations seems to converge towards
results of the Gauss-Southwell method.

3.6 Conclusions

We have introduced an algebraic multi-level frame construction. It transforms the multi-level
discretization approach, known as multi-level frames, to a purely algebraic solver technique.
In case of an elliptic model problem, subspace correction iterative methods applied to the al-
gebraic multi-level frame system converge in a problem-independent way, i.e. achieve a similar
performance as standard algebraic multigrid. Moreover, the proposed approach exposes struc-
ture that will make it an optimal candidate for error-resilience. Compared to the geometric
construction shown in [GO12], we achieve (qualitatively) identical results, even on a complex
geometry. Due to its algebraic nature, the proposed method is an optimal candidate for generic
linear algebra libraries.

In the future, it is planned to discuss improvements for performance and computational
complexity. New on-the-fly construction and compression techniques may reduce the runtime
and computational complexity. At the same time, the extreme parallelism and error-resilience
of the proposed method is expected to be exemplified by providing a multi-level algebraic
frames library based on work in [The10]. This library might to be able to outperform classical
algebraic multigrid approaches on multi- and many-core architectures.

3.6 Conclusions 77

Acknowledgement

The author was partially supported by the project EXAHD of the DFG priority program 1648
Software for Exascale Computing (SPPEXA).

References
[ATDH13] H. Anzt, S. Tomov, J. Dongarra, and V. Heuveline. Weighted block-asynchronous

iteration on GPU-accelerated systems. In I. Caragiannis, M. Alexander, R. Badia,
M. Cannataro, A. Costan, M. Danelutto, F. Desprez, B. Krammer, J. Sahuquillo,
S. Scott, and J. Weidendorfer, editors, Euro-Par 2012: Parallel Processing Work-
shops, volume 7640 of Lecture Notes in Computer Science, pages 145–154. Springer
Berlin Heidelberg, 2013.

[ATG`12] H. Anzt, S. Tomov, M. Gates, J. Dongarra, and V. Heuveline. Block-asynchronous
multigrid smoothers for GPU-accelerated systems. Procedia Computer Science,
9(0):7 – 16, 2012. Proceedings of the International Conference on Computational
Science, ICCS 2012.

[BFG`12] A. Baker, R. Falgout, T. Gamblin, T. Kolev, M. Schulz, and U. Yang. Scaling al-
gebraic multigrid solvers: On the road to Exascale. In C. Bischof, H.-G. Hegering,
W. E. Nagel, and G. Wittum, editors, Competence in High Performance Comput-
ing 2010, pages 215–226. Springer Berlin Heidelberg, 2012.

[BT13] A. Beck and L. Tetruashvili. On the convergence of block coordinate descent type
methods. SIAM Journal on Optimization, 23(4):2037–2060, 2013.

[CdSBS12] M. Casas, B. R. de Supinski, G. Bronevetsky, and M. Schulz. Fault resilience
of the algebraic multi-grid solver. In Proceedings of the 26th ACM International
Conference on Supercomputing, ICS ’12, pages 91–100, New York, NY, USA, 2012.
ACM.

[CGG`14] F. Cappello, A. Geist, W. Gropp, S. Kale, B. Kramer, and M. Snir. Toward
Exascale resilience: 2014 update. Supercomputing frontiers and innovations, 1(1),
2014.

[Dah97] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Nu-
merica, 6:55–228, 1 1997.

[DFR`04] S. Dahlke, M. Fornasier, T. Raasch, R. Stevenson, and M. Werner. Adaptive
frame methods for elliptic operator equations: The steepest descent approach.
Adv. Comput. Math, 27:27–63, 2004.

[DIR92] J. Dendy, Jr., M. Ida, and J. Rutledge. A semicoarsening multigrid algorithm
for SIMD machines. SIAM Journal on Scientific and Statistical Computing,
13(6):1460–1469, 1992.

78 3 Subspace correction methods in algebraic multi-level frames

[FS00] A. Frommer and D. B. Szyld. On asynchronous iterations. Journal of Computa-
tional and Applied Mathematics, 123(1âĂŞ2):201 – 216, 2000. Numerical Analysis
2000. Vol. III: Linear Algebra.

[GHO15] M. Griebel, A. Hullmann, and P. Oswald. Optimal scaling parameters for sparse
grid discretizations. Numerical Linear Algebra with Applications, 22(1):76–100,
2015.

[GK01] M. Griebel and F. Kiefer. Generalized hierarchical basis multigrid methods for
convection-diffusion problems. SFB Preprint 720, Sonderforschungsbereich 256,
Institut für Angewandte Mathematik, Universität Bonn, 2001.

[GKK03] T. Gerstner, F. Kiefer, and A. Kunoth. Wavelet and multigrid methods for
convection–diffusion equations. In H.-J. Neugebauer and C. Simmer, editors, Dy-
namics of Multiscale Earth Systems, Lecture Notes in Earth Sciences 97, pages
123–134. Springer, 2003.

[GMOS06] M. Griebel, B. Metsch, D. Oeltz, and M. A. Schweitzer. Coarse grid classification:
A parallel coarsening scheme for algebraic multigrid methods. Numerical Linear
Algebra with Applications, 13(2–3):193–214, 2006.

[GO93] M. Griebel and P. Oswald. On additive Schwarz preconditioners for sparse grid
discretizations. Numerische Mathematik, 66(1):449–463, 1993.

[GO95a] M. Griebel and P. Oswald. On the abstract theory of additive and multiplicative
Schwarz algorithms. Numerische Mathematik, 70(2):163–180, 1995.

[GO95b] M. Griebel and P. Oswald. Tensor product type subspace splittings and mul-
tilevel iterative methods for anisotropic problems. Advances in Computational
Mathematics, 4(1):171–206, 1995.

[GO12] M. Griebel and P. Oswald. Greedy and randomized versions of the multiplicative
Schwarz method. Linear Algebra and its Applications, 7:1596–1610, 2012.

[Gri93] M. Griebel. Multilevelmethoden als Iterationsverfahren über Erzeugendensyste-
men. Teubner Skripten zur Numerik. Vieweg+Teubner Verlag, 1993.

[Gri94] M. Griebel. Multilevel algorithms considered as iterative methods on semidefinite
systems. SIAM Int. J. Sci. Stat. Comput., 15(3):547–565, 1994.

[HGRW15] M. Huber, B. Gmeiner, U. Rüde, and B. I. Wohlmuth. Resilience for Exascale
enabled multigrid methods. CoRR, abs/1501.07400, 2015.

[HSS08] H. Harbrecht, R. Schneider, and C. Schwab. Multilevel frames for sparse tensor
product spaces. Numerische Mathematik, 110(2):199–220, 2008.

[Kie01] F. Kiefer. Multiskalen-Verfahren für Konvektions-Diffusions Probleme. PhD the-
sis, Institute for Numerical Simulation, University of Bonn, jul. 2001.

3.6 Conclusions 79

[Mai13] J. Mairal. Optimization with first-order surrogate functions. In Proceedings of the
International Conference on Machine Learning (ICML, 2013.

[Met13] B. Metsch. Algebraic Multigrid (AMG) for Saddle Point Systems. PhD thesis,
Institute for Numerical Simulation, University of Bonn, jul. 2013.

[MS07] S. MacLachlan and Y. Saad. A greedy strategy for coarse-grid selection. SIAM
Journal on Scientific Computing, 29(5):1825–1853, 2007.

[Nes12] Y. Nesterov. Efficiency of coordinate descent methods on huge-scale optimization
problems. SIAM Journal on Optimization, 22(2):341–362, 2012.

[OGWW98] C. Oosterlee, F. Gaspar, T. Washio, and R. Wienands. Multigrid line smoothers
for higher order upwind discretizations of convection-dominated problems. Journal
of Computational Physics, 139(2):274 – 307, 1998.

[OZ] P. Oswald and W. Zhou. Convergence estimates for Kaczmarz-type methods.
Linear Algebra and its Applications. , 2015, submitted.

[RS86] J. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. McCormick, editor,
Multigrid Methods, Frontiers in Applied Mathematics, volume 5. SIAM, Philadel-
phia, 1986.

[Sou40] R. Southwell. Relaxation methods in engineering science - A treatise on approxi-
mate computation. Oxford Univ. Press, Oxford, 1940.

[Stü01] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied
Mathematics, 128(1-2):281 – 309, 2001. Numerical Analysis 2000. Vol. VII: Partial
Differential Equations.

[The10] R. Thesen. Effiziente adaptive Lösung von Multilevelsystemen. diploma thesis,
Institute for Numerical Simulation, University of Bonn, aug. 2010.

[TS01] U. Trottenberg and A. Schuller. Multigrid. Academic Press, Inc., Orlando, FL,
USA, 2001.

[VMB96] P. Vank, J. Mandel, and M. Brezina. Algebraic multigrid by smoothed aggregation
for second and fourth order elliptic problems. Computing, 56(3):179–196, 1996.

[ZF13] A. Zouzias and N. M. Freris. Randomized extended Kaczmarz for solving least
squares. SIAM Journal on Matrix Analysis and Applications, 34(2):773–793, 2013.

4 On the algebraic construction of sparse
multilevel approximations of elliptic tensor
product problems

4.1 Introduction

The solution of elliptic problems on tensor products of a polygonally bounded domain Ω Ă Rd

with e.g. d “ 2, 3 given by
p∆ b ∆qu “ f on Ω ˆ Ω ,

u “ 0 on BpΩ ˆ Ωq ,

is an important high-dimensional problem. As an example, this problem shows up in the
estimation of the output covariance of an elliptic partial differential equation with random
input data that is given on a domain Ω, see [Har10, HPS13, ST03b, ST03a] for example. The
problem becomes high-dimensional since the dimensionality of the elliptic problem on Ω is
doubled. In case of real-world problems in d “ 3, we end up solving a six-dimensional problem,
which might become prohibitively expensive.

Recently, there have been developments to overcome this strong limitation. These develop-
ments are based on the introduction of a geometrically constructed multilevel frame to solve
the elliptic problem on Ω. Standard Galerkin discretizations of this problem approximate the
solution with respect to a basis of a finite-dimensional trial and test space VJ associated to a
triangulation TJ of the domain Ω. A multi-level frame discretization uses more functions to
construct the trial and test space. In fact, it uses all basis functions of a (nested) hierarchy
of subspaces V0 Ă V1 Ă . . . Ă VJ , which are associated to a (nested) geometric hierarchy of
triangulations T0, T1, . . . , TJ with an increasing number of nodes |T0| ă |T1| ă . . . ă |TJ |. This
set with many redundant basis functions is no longer a basis for VJ , but a frame.

The multilevel frame gives rise to a sparse approximation with respect to the interaction
of the involved domains in Ω ˆ Ω [HSS08, ST03b, ST03a]. It has been shown that the sparse
approximation, i.e. using the trial and test space

Ť

0ďj`j1ďJ Vj bVj1 instead of VJ bVJ , allows to
solve the tensor product problem at a computational complexity that stays essentially (i.e. up
to a poly-logarithmic factor) proportional to the number of degrees of freedom to discretize a
function on the single domain Ω with respect to the trial space VJ . In a more recent work by
one of the authors [HPS13], it has been shown that the sparse approximation can equivalently
be replaced by the sparse grid combination technique [BG04, GH14, GSZ92, HGC07], which
combines cheap anisotropic full-grid solutions of the tensor-product elliptic problem. This
further reduces the computational work and facilitates the implementation.

However, the currently available geometric construction of the multilevel hierarchy imposes
limitations on the discretization for real-world problems. First, the coarsest triangulation T0 in

81

82 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

the geometrical hierarchy of triangulations has to fully represent the boundary of the geometry
Ω. This either limits the types of geometry to consider or the computational efficiency (in case
even the coarsest mesh has to be fine at the boundary). Second, the use of a fully unstructured
mesh TJ becomes barely possible, since we are missing a coarsening strategy for such a mesh.

This work introduces algebraically constructed multilevel hierarchies [Gri94, GO12, Zas16]
for the solution of elliptic problems on tensor product domains. While previous works [HPS13,
HSS08] first constructed the multilevel hierarchy of meshes or triangulations and then dis-
cretized the problem by finite elements, the new approach first discretizes the problem on
Ω on the finest (potentially unstructured) mesh TJ and then constructs coarser versions of
the linear system resulting from the fine discretization. The coarser problems are generated
using algebraic coarsening known from the classical Ruge-Stüben algebraic multigrid (AMG)
[RS86, Stü01]. The algebraic construction of multilevel hierarchies for frames has been pre-
viously discussed in context of optimal complexity solvers for elliptic problems in [Zas16].
However, it has not been applied in the context of sparse approximation yet. Note that, by
construction, our new approach allows us to overcome both the limitations in presence of com-
plex geometries and the requirements on the structure of the mesh. Moreover, it perfectly fits
into the context of black-box type PDE solvers.

As it is well-known, a full theory for algebraic multigrid methods, especially in the multilevel
context and on unstructured grids, is still to be developed. Nevertheless, this technique is
extremely popular as solver in real-world applications and, usually, empirically shows the same
performance as geometric multigrid. This work follows the same spirit and focuses on the formal
construction and the empirical analysis of the resulting numerical method. Thereby, we are able
to match the convergence results available for geometrically constructed sparse approximations,
while being able to apply this approach to complex geometries and unstructured grids in a
black-box fashion.

In Section 4.2, the algebraic multilevel construction is outlined. This construction is intro-
duced to the tensor product problem with sparse approximation and the sparse grid combina-
tion technique in Section 4.3. Section 4.4 briefly discusses the implementation. In Section 4.5,
we give a series of numerical examples with empirical error analysis. Finally, Section 4.6 sum-
marizes this work.

4.2 Algebraic multilevel constructions

In our algebraic construction, we aim at replacing classical multilevel discretizations for elliptic
partial differential equations by a purely matrix-based construction. That is, we consider an
elliptic partial differential equation

´∆u “ f on Ω
u “ 0 on BΩ

(4.1)

on a polygonally bounded domain Ω Ă Rd. This problem has been discretized by some method
on a discretization level J , leading to a system of linear equations

AJuJ “ fJ , (4.2)

4.2 Algebraic multilevel constructions 83

Algorithm 6 Standard coarsening algorithm [TS01]

Require: level j
1: function AMGstandardCoarsening
2: Fj :“ H, Dj´1 :“ H, Uj :“ Dj

3: for i P Uj do
4: λjpiq :“

ˇ

ˇ

ˇ
SjpiqJ

X Uj

ˇ

ˇ

ˇ
` 2

ˇ

ˇ

ˇ
SjpiqJ

X Fj

ˇ

ˇ

ˇ

5: while Di s.th. λjpiq ‰ 0 do
6: find imax :“ argmaxi λjpiq
7: Dj´1 :“ Dj´1 Y timaxu

8: Uj :“ Ujztimaxu

9: for k P pSjpimaxq
J

X Ujq do
10: Fj :“ Fj Y tku

11: Uj :“ Ujztku

12: for i P Uj do
13: λjpiq :“

ˇ

ˇ

ˇ
SjpiqJ

X Uj

ˇ

ˇ

ˇ
` 2

ˇ

ˇ

ˇ
SjpiqJ

X Fj

ˇ

ˇ

ˇ

14: return Dj´1, Fj

where AJ P RNJ ˆNJ is an M-matrix and uJ , fJ P RNJ . Note that an M-matrix has positive
diagonal entries, non-positive non-diagonal entries, is non-singular and the entries of its inverse
are non-negative. In case of the discretization by finite elements, AJ corresponds to the stiffness
matrix and fJ is the load vector, obtained by, for example, using the mass matrix MJ and
interpolation. Moreover, we identify each variable uJ,i in uJ “ puJ,1 . . . uJ,NJ

qJ by its index i
and introduce the corresponding index set DJ :“ t1, . . . , NJ u for discretization level J .

4.2.1 Multilevel hierarchy of discretized problems

The objective is to construct from (4.2) a hierarchy of systems of linear equations

Ajuj “ fj , j “ 0, . . . , J , (4.3)

which are similar to discretizations on different geometric refinement levels. Especially, we
intend to do this in a purely matrix-based, i.e. algebraic, way by using coarsening and transfer
operators from algebraic multigrid (AMG) [Stü01]. To this end, we first introduce a construc-
tion method for a hierarchy of variable sets

D0 Ă D1 Ă . . . Ă DJ (4.4)

of sizes
N0 ď N1 ď . . . ď NJ .

In classical Ruge-Stüben AMG [RS86, TS01], this is achieved by recursively splitting the set

84 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

of variables Dj on level j into a set of coarse and fine grid variables

Dj “ Dj´1 Ÿ Fj ,

where “Ÿ” is the union of two disjoint sets. Each fine grid variable is supposed to be in the
neighborhood of an appropriate amount of strongly negatively coupled coarse grid variables,
where we define the neighborhood of a variable i P Dj by

Njpiq :“ ti1 P Dj : i1 ‰ i, aj,ii1 ‰ 0u ,

where Aj “ paj,ii1q
Nj

i,i1“1. That is, we consider neighborhoods between variables by reinterpret-
ing the system matrix Aj as the adjacency matrix of a graph with edges between nodes for each
non-zero matrix entry. Moreover, the set of neighboring strongly negatively coupled variables
of a variable i is

Sjpiq :“
!

i1 P Njpiq : ´aj,ii1 ě εstr max
k

|aj,ik|

)

with a strength measure 0 ă εstr ă 1. The standard coarsening procedure, cf. Algorithm 6
[TS01], builds an appropriate splitting Dj “ Dj´1 Ÿ Fj based on these considerations. It also
involves the sets SjpiqJ, which are given by

SjpiqJ :“ ti1 P Dj : i P Sjpi1qu .

Algorithm 6 uses the notation | ¨ | to express the cardinality of a set.
In order to define the hierarchy of linear systems (4.3), we further need a means to transfer

information between two consecutive levels j and j ` 1. This is done by prolongation operators
P j`1

j P RNj`1ˆNj and restriction operators P j
j`1 P RNjˆNj`1 . Prolongation and restriction are

done in a purely algebraic way based on AMG. In standard interpolation [TS01], which is one
possible type of algebraic prolongation, data given on a fine grid node i P Fj is interpolated
from the set of interpolatory variables

Ijpiq :“ pDj´1 X Sjpiqq X

¨

˝

ď

i1PFjXSjpiq

`

Dj´1 X Sjpi1q
˘

˛

‚ .

Thus, it is interpolated from strongly negatively coupled coarse grid points and all coarse grid
points that are strongly negatively coupled to strongly negatively coupled fine grid points.
The exact choice of prolongation / interpolation weights is known from literature [TS01]. If
the quality of the resulting algebraic interpolation is not good enough, one might also apply
one or several steps of Jacobi interpolation [TS01]. This, roughly speaking, extends the whole
set of interpolatory variables Ijpiq of a node i by one layer of additional neighboring nodes.
Truncation allows to drop some interpolatory variables based on a threshold [TS01]. Restriction
is given as the transpose of the prolongation, i.e. P j

j`1 “ P j`1
j

J.
Finally, we recursively define for j “ J ´ 1, . . . , 0 the matrices and the right-hand sides

involved in the hierarchy of linear systems (4.3) as

Aj :“ P j
j`1Aj`1P j`1

j , fj :“ P j
j`1fj`1 ,

4.2 Algebraic multilevel constructions 85

Algorithm 7 V-cycle in a multigrid scheme

Require: A0, . . . , AJ , P 1
0 , . . . , P J

J´1, P J´1
J , . . . , P 0

1
1: function VCycle(uj , bj , j)
2: if j=0 then
3: return A´1

j bj Ź direct solve on coarsest level
4: else
5: uj “ smoother(uj , bj) Ź pre-smoothing
6: rj´1 “ P j´1

j pb ´ Ajujq Ź restriction
7: uj´1 “ VCycle(0,rj´1,j ´ 1) Ź coarse grid correction
8: uj “ uj ` P j

j´1uj´1 Ź prolongation
9: uj “ smoother(uj , bj) Ź post-smoothing

10: return uj

which can also be directly expressed in terms of prolongations and restrictions from AJ and
fJ as

Aj :“ P j
j`1 ¨ ¨ ¨ P J´1

J AJP J
J´1 ¨ ¨ ¨ P j`1

j , fj :“ P j
j`1 ¨ ¨ ¨ P J´1

J fJ .

Later on, we will also use the abbreviations

P j
J :“ P j

j`1 ¨ ¨ ¨ P J´1
J , P J

j “ P J
J´1 ¨ ¨ ¨ P j`1

j . (4.5)

Optimal complexity in AMG can be achieved, if coarser levels are constructed such that the
operator complexity

CA :“
ÿ

j

ηpAjq

ηpAJ q
,

where ηpAJ q is the number of non-zeros in AJ , stays bounded by some constant independent
of J . Standard coarsening together with standard interpolation empirically fulfill this property
for model problems discretized on simple geometries. However, in more complex situations,
it might happen that standard interpolation and standard coarsening fail in achieving this.
Then, stronger or more aggressive versions such as extended / multi-pass interpolation and
aggressive coarsening on some levels are applied to keep this empirical property [Yan10]. In
fact, it might become necessary to use the operator complexity as indicator function in a manual
optimization process in which several combinations of coarsenings and interpolation schemes
are tried until an acceptable operator complexity is reached. Unfortunately, to the best of the
authors’ knowledge, there is for now no theory on the decay of the number of non-zeros in the
coarse grid matrices Aj constructed by classical Ruge-Stüben AMG on multiple levels and for
general M matrices AJ , which could simplify this process.

In classical literature on algebraic multigrid, the hierarchy of system matrices, prolongation
operators, and restriction operators

A0, . . . , AJ , P 1
0 , . . . , P J

J´1, P J´1
J , . . . , P 0

1 ,

are used in an iterative method with, e.g., a V-cycle, cf. Algorithm 4.2.1, in order to solve
the linear system (4.2) with optimal constant or logarithmically growing number of iterations.

86 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

Instead, we will use it for the construction of a multi-level hierarchy of problems as required
by sparse multilevel approximations.

4.2.2 Multilevel frames

Let us note here that the above algebraic construction naturally leads to algebraic multilevel
frames, cf. [Zas16], for the elliptic problem on Ω. That is, we formally introduce the system of
linear equations

AJuJ “ fJ (4.6)

with

AJ :“

¨

˚

˝

A11 ¨ ¨ ¨ A1J
...

AJ1 ¨ ¨ ¨ AJJ

˛

‹

‚

, uJ :“

¨

˚

˝

u0
...

uJ

˛

‹

‚

, fJ :“

¨

˚

˝

f0
...

fJ

˛

‹

‚

and set
Aj1j2 “ P J

j1AJP j2
J .

The diagonal matrices Ajj are the system matrices Aj from the previous section. Moreover,
we use (4.5) to extend prolongation / restriction to arbitrary levels. We further introduce the
multi-index j “ pj1, j2q allowing the abbreviated notation

AJ “ rAjs}j}`8 ďJ , uJ “ rujs|j|ďJ , fJ “ rfjs|j|ďJ .

Note that matrix AJ has a large kernel. However, it can be ignored when solving (4.3.1) by
using appropriate iterative linear solvers. The projection matrix

PJ “
“

P J
0 , P J

1 , . . . , P J
J

‰

can be used to transfer the right-hand side fJ from (4.2) to the multi-level representation fJ

and to project back solutions uJ to the single-level solutions uJ . This is done by

uJ “ PJuJ “

J
ÿ

j“0
P J

j uj , fJ “ PJ
J fJ “

“

P 0
J fJ , . . . , P J

J fJ

‰J
. (4.7)

Using the linear system (4.3.1) together with the transfer operations from (4.7) instead of
using linear system (4.2) conceptually corresponds to replacing a single-level discretization by
a multi-level frame discretization. As in multilevel frame discretizations based on geometric
refinements / coarsening, cf. [HSS08], the above system of linear equations is much larger, since
it encodes the full information of the hierarchy of systems in (4.3). However, it has the big
advantage that the application of standard iterative solvers such as Jacobi, Gauss-Seidel or
CG to (4.3.1) immediately leads to the same convergence behavior (in terms of the number of
iterations) as if these solvers were applied with a BPX-preconditioner to (4.2). A Gauss-Seidel
method applied to (4.3.1) could e.g. converge as fast as a multigrid method with Gauss-Seidel
smoother applied to (4.2).

From a theoretical point of view, it has been formally shown for geometric multi-level
constructions, that (4.3.1) is equivalent to the linear system of equations (4.2), if the BPX-

4.3 Sparse algebraic tensor product approach 87

preconditioner is applied in the solution process, cf. [BPX90, Dah97, Gri93, Osw94]. In [Zas16],
it has been further shown by numerical experiments that the application of specific iterative
solvers to (4.3.1) leads to problem-size independent convergence rates for the here discussed
case of algebraically constructed multilevel frames.

4.3 Sparse algebraic tensor product approach
Next, we like to consider elliptic problems on tensor products ΩˆΩ of the polygonally bounded
domain Ω. That is, we consider problems of the form

p∆ b ∆qu “ f on Ω ˆ Ω ,

u “ 0 on BpΩ ˆ Ωq .
(4.8)

As in Section 4.2, we assume to have a discretization (e.g. by finite elements) for the problem
on a level J resulting in the system of linear equations

pAJ b AJ qUJ “ FJ . (4.9)

Here, AJ P RNJ ˆNJ is the system matrix from (4.2). The operator b is the Kronecker product
operator for matrices. For matrices S P Rn1ˆn2 , T P Rm1ˆm2 , it computes the Kronecker
product

S b T :“

¨

˚

˝

s11T . . . s1n2T
...

sn11T . . . sn1n2T

˛

‹

‚

.

Consequently, AJ b AJ becomes a matrix of size NJ
2 ˆ NJ

2. Moreover, UJ , FJ P RNJ ¨NJ are
the solution and the right-hand side, respectively.

By assuming an underlying d-dimensional finite element discretization with mesh width h
and a multigrid-type linear solver, solving the linear system in (4.9) would require at least
O
`

h´2d
˘

operations, in contrast to O
`

h´d
˘

for the problem given by (4.2). This amount of
computational work is prohibitively large, especially for larger d. Therefore, we shall find a
way to reduce the amount of work to solve this problem. Before we do that, we change the
problem discretization to a multilevel discretization, which is the basis for the subsequent sparse
approaches.

4.3.1 Multilevel frames for tensor product constructions

To extend the solution approach from Section 4.2.2 to tensor product problems, we first recall
that we had in the univariate multilevel frame case matrix blocks of the form

Aj “ Aj1j2 :“ P J
j1AJP j2

J ,

with P j
J , P J

j as defined in (4.5) by applying coarsening and the transfer operators of algebraic
multigrid. In the univariate case, the multilevel frame linear system of equations was

AJuJ “ fJ ,

88 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

Figure 4.1: For discretization level J “ 3, multilevel frames on the full tensor product space
require a very densely populated system matrix yAJ (left), while sparse approxima-
tion leads to the system matrix ĄAJ (center) with smaller size due to fewer active
(i.e. gray) matrix subblocks. The sparse grid combination technique (right) leads
to the most efficient approximation.

AJ “ rAjs}j}`8 ďJ , uJ “ rujs|j|ďJ , fJ “ rfjs|j|ďJ .

By tensorizing this problem, we naturally get the tensor-product frame linear system of equa-
tions

yAJUJ “ FJ , (4.10)

with
yAJ “ rAj1j2 b Aj1

1j1
2
s}pj1,j1

1q}`8 ,}pj2,j1
2q}`8 ďJ ,

and
UJ “ rUjs}j}`8 ďJ , FJ “ rFjs}j}`8 ďJ .

For a given right-hand side FJ , we can construct the corresponding blocks Fj by

Fj “ Fj1j2 :“
´

P j1
J b P j2

J

¯

FJ .

The corresponding vectors and matrices are (using j “ pj1, j2q) of the dimensionalities

Aj b Aj1 P R
Nj1 Nj1

1
ˆNj2 Nj1

2 and Uj , Fj P RNj1 Nj2 .

In order to characterize the computational complexity for the solution of (4.10), we recall
that we assume to have a constant operator complexity for the sequence of matrices Ajj “ Aj ,
i.e.

ř

ηpAjq ď c ηpAJ q. Moreover, by definition of the Kronecker product, we have the number
of non-zeros in each block of yAJ given by

ηpAj b Aj1q “ ηpAjqηpAj1q ,

from which it is easy to verify that we have

ηpyAJ q “ ηpAJ qηpAJ q ,

with AJ from Section 4.2.2. It remains to find an upper bound to the number of non-zeros of

4.3 Sparse algebraic tensor product approach 89

the univariate multilevel frame system matrix. Here, we compute

ηpAJ q “ η
´

rAjs}j}`8ďJ

¯

“

J
ÿ

j1“1

J
ÿ

j2“1
ηpAj1j2q ď

J
ÿ

j1“1

J
ÿ

j2“1
ηpAmaxpj1,j2q,maxpj1,j2qq

“ J
ÿ

j

ηpAjjq ď CAJηpAJ q .

In the last equality, we used that we have ηpAj1j2q “ ηpAj2j1q. The last inequality corresponds
to our assumption on the operator complexity. Since we have
J „ Op| log h|q, we finally get

ηpyAJ q ď c CA
2| log h|2ηpAJ q2 .

This means that the computational work to solve (4.10) is asymptotically identical to a solve
of (4.9), up to a logarithmic term. Moreover, by using recursive techniques known from the
BPX-preconditioner [BPX90], we could even avoid the logarithmic term.

Figure 4.1 displays the matrix blocks {Apj,j1q :“ Amaxpj1,j2q,maxpj1
1,j1

2q that are used by the
tensor product multi-level frame system. We limit ourselves to this subset of matrices for
the ease of visualization. However, following [HSS08], we in fact only need these matrices to
construct xAJ , if appropriate prolongation and restriction operators are considered.

4.3.2 Sparse tensor product construction

Solving (4.9) or (4.10) would be prohibitively expensive, cf. Figure 4.1. As in the geometric
multilevel case, we now assume that the solution of the elliptic problem (4.1) on Ω is Hs regular.
Therefore, the solution of the tensor product problem (4.8) becomes Hs

mix-regular, see [ST03b].
This allows to follow, for example, the lines of [HSS08] to introduce a sparse, however now
algebraically constructed, version of the discretized problem. Instead of using all sub-problems
for multi-indices }j}`8 ď J , the sparse approximation is reduced to multi-indices }j}`1 ď J .
Thereby, we obtain a new system of linear equations

ĄAJ
ĂUJ “ ĂFJ

with
ĄAJ :“ rAj1j2 b Aj1

1j1
2
s}pj1,j1

1q}`1 ,}pj2,j1
2q}`1 ďJ ,

ĂUJ “ rUjs}j}`1 ďJ , ĂFJ “ rFjs}j}`1 ďJ .

Figure 4.1 compares both choices in the plots on the left-hand side and the center, recalling
that we use only matrices {Apj,j1q :“ Amaxpj1,j2q,maxpj1

1,j1
2q in this figure, see last section. It is

easy to see, that this choice should be much more efficient.
To show that it is actually more efficient, we now discuss the number of non-zeros in ĂAJ .

Similar to the extimate of the number of non-zeros in the univariate multi-level system matrix,

90 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

we now compute

ηp ĂAJ q “
ÿ

0ďj1`j1
1ďJ

ÿ

0ďj2`j1
2ďJ

ηpAj1j2 b Aj1
1j1

2
q

“

J
ÿ

j1“0

J´j1
ÿ

j1
1“0

J
ÿ

j2“0

J´j2
ÿ

j1
2“0

ηpAj1j2qηpAj1
1j1

2
q

ď

J
ÿ

j1“0

J´j1
ÿ

j1
1“0

J
ÿ

j2“0

J´j2
ÿ

j1
2“0

ηpAmaxpj1,j2q,maxpj1,j2qqηpAmaxpj1
1,j1

2q,maxpj1
1,j1

2qq

“ J2
J
ÿ

j“0

J´j
ÿ

j1“0
ηpAjjqηpAj1j1q

As discussed before, there is not much theory on the size of the levels in the algebraic multilevel
construction. The only available information is the assumed bound on the operator complexity.
However, this does not give enough information to finish the above estimate. Nevertheless, the
bound on the operator complexity implies a similar scaling of the non-zeros with level j as in
the geometric multilevel construction. Therefore, we here assume to have the same number
of non-zeros for each matrix Ajj as in the geometric construction, to give a hint towards the
possible performance improvement by the algebraic sparse construction.

With this in mind, we follow the previous example of (linear) finite elements on a mesh with
mesh width h. The number of non-zero entries for matrix Aj is proportional to the number of
elements and therefore

ηpAjjq “ Op2d jq .

By extending the above estimate, we get

ηp ĂAJ q “ J2
J
ÿ

j“0

J´j
ÿ

j1“0
ηpAjjqηpAj1j1q “ c J2

J
ÿ

j“0

J´j
ÿ

j1“0
2d j2d j1

“ c J2
J
ÿ

j“0

J
ÿ

k“j

2d j2d pk´jq “ c J2
J
ÿ

j“0

J
ÿ

k“j

2d k “ O
´

J32d J
¯

Moreover, we have J “ Op| log h|q. That is, the number of non-zeros in the system matrix in
ĄAJ is asymptotically

η
´

ĄAJ

¯

“ O
´

| log h|3 h´d
¯

.

That is, in case a BPX-type preconditioner [BPX90, Dah97, Gri93, Osw94] is used, the compu-
tational complexity of the problem on the tensor product domain Ω ˆ Ω is (up to a logarithmic
factor) reduced to the computational complexity of the problem on domain Ω. Moreover, by
applying the uni-directional principle [BZ96, Bun97, Zei11], one arrives at linear complexity
for the matrix-vector product with respect to the number OpNJ log NJ q of degrees of freedom
in the sparse multilevel frame.

4.3 Sparse algebraic tensor product approach 91

4.3.3 Sparse grid combination technique

It has been shown in [HPS13] that the previous sparse approximation is equivalent to the so-
called sparse grid combination technique. The latter one starts approximating tensor product
problems from a sequence of finite dimensional function spaces

V
piq

0 Ă V
piq

1 Ă . . . Ă V
piq

J Ă . . . Ă V piq

of increasing accuracy, where i indicates the domain to which the function space is associated.
Since we operate on Ω ˆ Ω, we have i “ 1, 2. As next step, hierarchical increment spaces W

piq
j

are considered such that
V

piq
j :“ W

piq
j ‘ V

piq
j´1 ,

where W
piq
0 :“ V

piq
0 . As usual in sparse (grid) approximation, the (two-dimensional) sparse

approximation space xVJ is then, cf. [GH13], defined as

xVJ :“
J
à

j1“0
W

p1q

J´j1 b V
p2q

j1 “

J
à

j1“0

´

V
p1q

J´j1 a V
p1q

J´1´j1

¯

b V
p2q

j1

“

J
à

j1“0

”´

V
p1q

J´j1 b V
p2q

j1

¯

a

´

V
p1q

J´1´j1 b V
p2q

j1

¯ı

. (4.11)

The combination technique computes (anisotropic) full-grid solutions on the subspaces involved
in equation (4.11) and combines them using appropriate projection. Translated to our problem
setting, this approximation is given as

xUJ “

J
ÿ

j1“0

“`

P J
J´j1 b P J

j1

˘

UJ´j1,j1 ´
`

P J
J´1´j1 b P J

j1

˘

UJ´1´j1,j1

‰

“
ÿ

}j}`1 “J

pP J
j b P J

j1 qUj ´
ÿ

}j}`1 “J´1
pP J

j b P J
j1 qUj . (4.12)

To compute it, we have to solve the decoupled problems

xAjUj “ pAj1 b Aj2qUj “ Fj , where }j}`1 P tJ, J ´ 1u . (4.13)

On the right-hand side of Figure 4.1, the sub-matrices xAj used in this approximation have
been marked gray. As before, one can easily verify that the total number of non-zeros of the
matrices in (4.13) is asymptotically O

`

| log h| h´d
˘

for the case of linear finite elements on a
tetrahedral mesh with mesh width h in d dimensions and a geometrically constructed multilevel
structure. However, Figure (4.1) easily clarifies that the pre-asymptotic number of non-zeros
in the matrices involved in the combination technique is much smaller than the non-zeros in
the sparse approximation discussed before.

In terms of computational complexity of the combination technique, let us remind that the
(approximate) solution of each sub-problem in (4.13) can be realized by an iterative linear
solver with matrix-vector products. To be more specific, tensor product versions of standard

92 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

iterative solvers can be constructed, by reshaping a given iterate Uj“pj,j1q P RNj ¨N 1
j (and the

appropriate right-hand side) to a matrix of size Nj ˆ Nj1 . Then, the action of one step of an
iterative solver for matrix xAj “ Aj b Aj1 is done by first applying the iterative solver step for
Aj to all Nj1 columns of the reshaped matrix and by second applying the iterative solver step
for Aj1 to all Nj rows of the reshaped matrix. One easily verifies that the Kronecker product
of two matrices Aj , Aj1 with OpNjq, OpNj1q non-zeros has OpNjNj1q non-zeros. This leads to
a computational complexity of OpNjNj1q for a single matrix-vector product.

Next, we observe that we actually need only a problem-size independent constant number of
iterations, if we choose an appropriate solver. Since we have all prolongation and restriction
operators from AMG at our disposal, we can actually build a tensor product version of algebraic
multigrid. The construction of a tensor-product AMG follows the idea outlined above, i.e. we
apply univariate versions of AMG to the columns and rows of a reshaped iterate Uj“pj,j1q of
size Nj ˆ Nj1 . The tensor-product AMG gives us the property of problem-size independent
convergence for each sub-problem in (4.13), i.e. we need OpNjNj1q operations for each sub-
problem.

While we have no theory on the number of unknowns on each level of our algebraically
constructed combination technique, we can still give an analogy from the geometric setting,
in order to predict the overall complexity of the method. In case our algebraical construction
would behave exactly as a geometrically constructed multilevel hierarchy, we would have the
relation Nj “ Op2djq. Thereby, the solution of each sub-problem would require Op2dpj`j1qq

operations. Since it holds }j}`1 P tJ, J ´ 1u, we can compute
ÿ

}j}`1 PtJ,J´1u

2dpj`j1q “
ÿ

}j}`1 “J

2dpj`j1q `
ÿ

}j}`1 “J´1
2dpj`j1q

“ pJ ` 1q2dJ ` J2dpJ´1q .

Hence, we would finally end up with a computational complexity of OpJ2dJ q or OpNJ log NJ q.

4.4 Implementation

In our numerical results, we approximate solutions for tensor product finite element discretiza-
tions of elliptic problems based on the combination technique with Ω Ă R2,3. To this end, we
assemble system matrices for a given problem, construct the multilevel hierarchies, solve the
decoupled, anisotropic problems in (4.13) and combine the solutions following the combination
rule (4.12).

Assembly of system matrices. The discretization by the finite element method is done with
the Matlab PDE Toolbox of Matlab 2017a. We use linear finite elements and construct meshes
with maximum element size Hmax“ 2´J . Furthermore, we use the option Jiggle to optimize
the mesh in quality. The stiffness matrix (incorporating boundary conditions) is constructed
by using the Matlab command assembleFEMatrices with option nullspace. In a similar way,
we extract the mass matrix. Afterwards, both matrices and the mesh node coordinates are
stored to files.

4.4 Implementation 93

Construction of the multilevel hierarchy. From within Matlab we call an in-house ad-hoc
code that uses the parallel linear solver library hypre [FY02] in version 2.11.1. This library
contains the implementation BoomerAMG of classical Ruge-Stüben AMG. The code reads the
stiffness matrix from file and creates the AMG multilevel hierarchy by using hypre. In addition
to standard coarsening with strength measure εstr “ 0.25 and standard interpolation, we use
two passes of Jacobi interpolation with a truncation of the Jacobi interpolation with a threshold
of 0.001 for the two-dimensional problems and 0.01 for the three-dimensional problem (being
treated in Section 4.5). All other parameters are kept as the defaults of BoomerAMG. After
having created the multigrid hierarchy, the program stores the prolongation matrices of all
created levels to files. These are read by Matlab.

Solution of the anisotropic tensor product problems. Based on the prolongation matrices
and the system matrix AJ on the finest levels, the decoupled problems in (4.13) can be set
up. As discussed before, a tensor product version of AMG is used to solve the systems of
linear equations. In our implementation, we construct the sub-problem operators in (4.13) by
individually multiplying the transfer operators between two consecutive levels.

Our tensor product AMG is iterated until the convergence criterion

}Rit
j }`2{}Fj}`2 ď εtol

is fulfilled, where Rit
j is the residual of the current iterate U it

j in the solver. Since the problems
in (4.13) completely decouple, we can easily parallelize their solution process by a parfor loop
in Matlab. In case an individual problem becomes very expensive, we further implemented a
distributed memory parallelization for the tensor product AMG based on Matlab’s distributed
function. Thereby, we overcome the limitation of a non-existing multi-core parallelization for
sparse matrix-vector products in Matlab.

Combination of the solutions. In the combination phase, we avoid to prolongate the full
partial solutions to the finest level J . Instead, we randomly chose Neval nodes on the product
of the finest meshes on Ω ˆ Ω. On these points, we evaluate the combination formula (4.12)
and compute the empirical error measure

epUapproxq “ }Uapprox ´ Uref }`2{}Uref }`2 ,

where Uapprox is the approximated solution and Uref is an appropriately evaluated reference
solution. Note that we do not multiply the tensor product of the prolongation with the solution.
Instead, we follow the ideas from Section 4.3.3 for the construction of the tensor product AMG
and apply the prolongations direction-wise. The prolongation for each sub-problem is also
parallelized by a parfor loop.

94 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

Figure 4.2: The combination technique based on our algebraic multilevel hierarchy and applied
to the tensor product of a disk geometry with an unstructured mesh (left, trian-
gulated with J “ 5) shows the same convergence as the geometrically constructed
combination technique (right).

4.5 Numerical results
In our empirical studies, we consider the numerical solution of the problem

p∆ b ∆qu “ f on Ω ˆ Ω ,

u “ 0 on BpΩ ˆ Ωq .
(4.14)

by means of the combination technique based on the algebraic multilevel hierarchy. Different
choices will be made for the domain Ω and the right-hand side f .

4.5.1 Analytic example on a disk

The first study is done on a disk domain Ω with center p0, 0qJ and radius 0.5. We set

fpx, yq “ 1 .

The exact solution of the resulting problem is

upx, yq “
1
16

`

x2
1 ` x2

2 ´ 0.52˘ `y2
1 ` y2

2 ´ 0.52˘ .

To approximate the solution u by the combination technique, we follow the methodology dis-
cussed in Section 4.4. As part of this, we triangulate the geometry with a maximum element
width of 2´J . Figure 4.2 shows on the left-hand side the resulting mesh for J “ 5. It is obvious
that the resulting mesh is unstructured. Therefore, classical geometric constructions for the
sparse grid combination technique would not be feasible on that mesh. In contrast, our new
algebraic approach can solve this problem.

This is shown on the right-hand side of Figure 4.2, where we compare the numerically ap-

4.5 Numerical results 95

Figure 4.3: We compare the runtime of the new combination technique approach (CT) with
the runtime of the traditional the full tensor-product approach (full TP) for the
solution of the tensor product elliptic problems on the disk geometry (left) and the
plate geometry (right).

proximated solution against the above exact solution. Convergence results for the choices
J “ 3, . . . , 8 are given. From literature, compare e.g. [HPS13], we know that the error of
the geometrically constructed sparse grid combination technique scales for the problem under
consideration like J4´J . As we can see from the convergence results in Figure 4.2, the alge-
braically constructed combination technique shows the same convergence behavior, while being
applicable to unstructured grids.

Figure 4.3 shows on the left-hand side computing times for growing problem size NJ of the
univariate discretization of Ω. We compare the time required for the solution of the combina-
tion technique sub-problems with the time required to solve the full tensor-product problem
(4.9) by our tensor-product AMG implementation. Note that we use the coarse grid hierar-
chies reported in Table 4.1 for both the combination technique and the full tensor-product
approach. All measurements were done on a compute server with dual 20-core Intel Xeon
E5-2698 v4 CPU at 2.2 GHz and 768 GB RAM. It becomes evident that our algebraically
constructed combination technique approach beats the full tensor-product approach in both,
computational complexity and effective runtime. However, both results do not show the pre-
dicted computational complexity of OpNJ log NJ q and OpNJ

2q. There are several reasons for
this behavior.

• First, algebraic multigrid often shows a small, roughly logarithmic, growth in the number
of iterations for larger problem sizes, resulting in a slow-down by a logarithmic factor.

• Second, we observe a certain fill-in in the system matrices for coarser problems in the
algebraic construction due to our choice of an additional (truncated) Jacobi interpolation.
However, this should be pre-asymptotic behavior.

• Third, as can be seen in Table 4.1, the AMG coarsening approach chosen in our imple-
mentation does not show the exact same (asymptotic) decay rate Op2djq in the number

96 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

dofs on algebraically coarsened level j
Ω J \ j 0 1 2 3 4 5 6 7 8 9

disk 3 3 11 28 71
4 8 21 52 119 320
5 12 31 84 207 495 1292
6 20 51 139 348 852 2009 5234
7 35 93 244 606 1473 3510 8415 22118
8 46 130 366 978 2469 5983 14480 34081 89097

Op2djq 1 5 22 87 348 1392 5569 22274 89097
plate 3 5 20 61

4 16 36 90 230
5 28 68 168 414 1072
6 46 116 297 745 1813 4703
7 63 184 515 1272 3117 7491 19611
8 103 302 815 2124 5301 12822 30639 80146

spanner 3 4 10 19 50 117 247
4 11 22 59 147 326 689 1454
5 40 114 300 689 1516 3216 6484 13939
6 210 548 1364 3123 6708 14109 29103 57438 125223
7 1386 3120 6627 14016 29533 61150 124921 253291 496614 1082581

Table 4.1: For a given problem on level J , the algebraic multilevel construction on our ex-
ample domains Ω constructs coarser levels with a decrease of the number of un-
knowns roughly similar to geometric multilevel constructions e.g. in the disk test
case. Above, only those levels j are reported that are used in the convergence study.

of levels as we expect it from the geometric construction. In fact, this leads to a problem-
size dependent growth of the coarsest grid. While this growth does not affect the error
decay, it shows up in the computational complexity.

Meanwhile, as stated before, we are able to beat the solution approach based on the full tensor-
product approach in terms of computational complexity. Even more, if we would use AMG
as solver for the anisotropic sub-problems in the geometric construction, we would see similar
results, anyway. Finally, in terms of runtime, we are by more than two orders of magnitude
faster.

4.5.2 Example on complex geometry with covariance load

The next numerical study is concerned with the solution of the problem (4.14) with the load

fpx, yq “ exp
ˆ

´}x ´ y}2

`

˙

that corresponds to an (unscaled) Gaussian covariance kernel with correlation length `. This is a
prototype version of the tensor product elliptic problem on ΩˆΩ showing up in the computation
of the output covariance of an elliptic problem on Ω with random input, cf. [HSS08].

In addition to the more complicated right-hand side, we solve the problem for a rather
complex geometry Ω. We choose the geomery of a square plate on r0, 1s2 with circular wholes

4.5 Numerical results 97

Figure 4.4: Even for a covariance load on a complex geometry (left, triangulated for J “ 5),
the algebraic construction shows the appropriate convergence rate after a short
pre-asymptotic phase (right).

of radius 0.15 which are centered at the points

tp0.25, 0.25q, p0.25, 0.75q, p0.75, 0.25q, p0.75, 0.75qu .

Figure 4.4 shows its triangulation for J “ 5 on the left-hand side. Note that it would be almost
impossible to solve a problem on such a geometry with the geometrical construction for the
sparse grid combination technique. However, with the algebraic construction, a coarsening to
very few degrees of freedom becomes easily possible, compare Table 4.1.

To be able to compare the above problem against a numerically computed reference solution,
we replace the (sampled) covariance kernel for ` “ 1 by its low-rank approximation computed
with the pivoted Cholesky factorization [HPS12], truncated for a trace norm of 10´8. In this
case, depending on the problem size, the truncation results in roughly twenty low-rank terms.

On the right-hand side of Figure 4.4, we show the convergence results with errors computed
against the numerically approximated exact solution by use of the low-rank approximation.
After a pre-asymptotic phase, we are able to attain an error that scales like J4´J as in the
geometric construction.

The problem size dependent runtime to compute the subspace solutions for the plate geome-
try is given in Figure 4.3 on the right-hand side. We observe similar compuational complexities
and similar runtimes as in the previous example on the disk.

4.5.3 Large-scale real-world example

Our last numerical study treats a large-scale problem with a complex real-world geometry Ω.
We again aim at solving (4.14) for fpx, yq “ 1. However, we choose the three-dimensional
spanner geometry found in Figure 4.5. In contrast to the previous examples, we set the max-
imum mesh width to 25´J , since the geometry is contained in the rather large bounding box
r´5, 5s ˆ r´12.2, 112s ˆ r´15.7, 15.7s. Note that the triangulation of Ω results for level J “ 7

98 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

Figure 4.5: In our large-scale real world example, we solve an elliptic problem on the tensor
product of the three-dimensional geometry of a spanner. For a discretization level
of J “ 7, the discretization of Ω has more than a million unknowns. This would
lead to 1012, that is a trillion, unknowns in the full tensor product discretization.

in a discretization with 1, 082, 581 unknowns. That is, if we would want to solve the full tensor
product problem on Ω ˆ Ω, cf. (4.8), then we would have to solve a problem with about 1012,
that is a trilion, unknowns. This would be clearly out of scope even for large parallel clusters.
In contrast, the combination technique allows to solve this problem. Nevertheless, we still have
to solve, e.g. for level J “ 7 and the system matrix {Ap0,Jq a problem with 1, 082, 581 ˆ 1, 386
unknowns, compare Table 4.1.

In Figure 4.6, we show the convergence results for this large scale problem relative to a
numerical approximation of the solution. Due to the high dimensionality and complexity of
the domain Ω, the convergence results in Figure 4.6 are only gradually approaching the optimal
scaling of J2´dJ . Nevertheless, we are able to solve this problem up to a certain accuracy. This
shows that even very complex problems of large scale can be solved by the proposed approach.

4.6 Conclusions
In this work, we have introduced an algebraic construction method for the sparse approximation
of tensor product elliptic problems by means of the combination technique. While previous
approaches were tight to geometric hierarchies of mesh refinements to build the underlying
multilevel discretization, we were able to solve the given type of problems on complex geometries
and for unstructured grids by an algebraic multilevel hierarchy based on AMG. We could show
that our approach has the same convergence rates as the geometric construction. Measurements
of the computational complexity were in the linear range with poly-logarithmic factors. Overall,
we are now able to apply sparse approximation for elliptic tensor product problems in a black-
box fashion.

4.6 Conclusions 99

Figure 4.6: Our algebraic multilevel construction for the sparse grid combination technique
on the large-scale three-dimensional spanner geometry gradually approaches the
optimal convergence rate of J2´dJ .

References
[BG04] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:1–123, 2004.

[BPX90] J. Bramble, J. Pasciak, and J. Xu. Parallel multilevel preconditioners. Mathematics
of Computation, 55:1–22, 1990.

[Bun97] H.-J. Bungartz. A multigrid algorithm for higher order finite elements on sparse
grids. ETNA. Electronic Transactions on Numerical Analysis, 6:63–77, 1997.

[BZ96] R. Balder and C. Zenger. The solution of multidimensional real Helmholtz equations
on sparse grids. SIAM Journal on Scientific Computing, 17(3):631–646, 1996.

[Dah97] W. Dahmen. Wavelet and multiscale methods for operator equations. Acta Numerica,
6:55–228, 1997.

[FY02] R. D. Falgout and U. M. Yang. hypre: A library of high performance preconditioners.
In P. M. A. Sloot, A. G. Hoekstra, C. J. K. Tan, and J. J. Dongarra, editors, Com-
putational Science — ICCS 2002, pages 632–641, Berlin, Heidelberg, 2002. Springer
Berlin Heidelberg.

[GH13] M. Griebel and H. Harbrecht. On the construction of sparse tensor product spaces.
Mathematics of Computation, 82(282):975–994, 2013.

[GH14] M. Griebel and H. Harbrecht. On the convergence of the combination technique. In
J. Garcke and D. Pflüger, editors, Sparse grids and Applications – Stuttgart 2014,
volume 97 of Lecture Notes in Computational Science and Engineering, pages 55–74.
Springer, 2014.

[GO12] M. Griebel and P. Oswald. Greedy and randomized versions of the multiplicative
Schwarz method. Linear Algebra and its Applications, 7:1596–1610, 2012.

100 4 On the algebraic constr. of sparse multilevel approx. of elliptic tensor product problems

[Gri93] M. Griebel. Multilevelmethoden als Iterationsverfahren über Erzeugendensystemen.
Teubner Skripten zur Numerik. B.G. Teubner, Stuttgart, 1993.

[Gri94] M. Griebel. Multilevel algorithms considered as iterative methods on semidefinite
systems. SIAM International Journal Scientific Statistical Computing, 15(3):547–565,
1994.

[GSZ92] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the solution
of sparse grid problems. In P. de Groen and R. Beauwens, editors, Iterative Methods
in Linear Algebra, pages 263–281. IMACS, Elsevier, North Holland, 1992.

[Har10] H. Harbrecht. A finite element method for elliptic problems with stochastic input
data. Applied Numerical Mathematics, 60(3):227–244, March 2010.

[HGC07] M. Hegland, J. Garcke, and V. Challis. The combination technique and some gener-
alisations. Linear Algebra and its Applications, 420(2):249–275, 2007.

[HPS12] H. Harbrecht, M. Peters, and R. Schneider. On the low-rank approximation by the
pivoted Cholesky decomposition. Applied Numerical Mathematics, 62(4):428–440,
2012.

[HPS13] H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based k-th
moment analysis of elliptic problems with random diffusion. Journal of Computa-
tional Physics, 252(C):128–141, November 2013.

[HSS08] H. Harbrecht, R. Schneider, and C. Schwab. Multilevel frames for sparse tensor
product spaces. Numerische Mathematik, 110(2):199–220, July 2008.

[Osw94] P. Oswald. Multilevel finite element approximation. Theory and applications. Teubner
Skripten zur Numerik. B.G. Teubner, Stuttgart, 1994.

[RS86] J. Ruge and K. Stüben. Algebraic multigrid (AMG). In S. McCormick, editor,
Multigrid Methods, Frontiers in Applied Mathematics, volume 5. SIAM, Philadelphia,
1986.

[ST03a] C. Schwab and R. A. Todor. Sparse finite elements for stochastic elliptic problems:
Higher order moments. Computing, 71(1):43–63, September 2003.

[ST03b] C. Schwab and R. A. Todor. Sparse finite elements for elliptic problems with stochas-
tic loading. Numerische Mathematik, 95(4):707–734, 2003.

[Stü01] K. Stüben. A review of algebraic multigrid. Journal of Computational and Applied
Mathematics, 128(1-2):281–309, 2001. Numerical Analysis 2000. Vol. VII: Partial
Differential Equations.

[TS01] U. Trottenberg and A. Schuller. Multigrid. Academic Press, Inc., Orlando, FL, USA,
2001.

[Yan10] U. M. Yang. On long-range interpolation operators for aggressive coarsening. Nu-
merical Linear Algebra with Applications, 17(2-3):453–472, 2010.

4.6 Conclusions 101

[Zas16] P. Zaspel. Subspace correction methods in algebraic multi-level frames. Linear Al-
gebra and its Applications, 488:505–521, 2016.

[Zei11] A. Zeiser. Fast matrix-vector multiplication in the sparse-grid Galerkin method.
SIAM Journal of Scientific Computing, 47(3):328–346, 2011.

Part II

Contributions in context of machine
learning

103

5 Boosting quantum machine learning models
with multi-level combination technique:
Pople diagrams revisited

5.1 Introduction

Chemical compound space, the property space spanned by all possible chemical compounds,
is unfathomably large due to its combinatorial nature [KE04, Mul17]. Exploring chemical
space from first principles is desirable in the context of computational materials design [Ced98,
HWCE06, vL14] as well as to fundamentally deepen our understanding of chemistry [vL13].
Over the last couple of years overwhelming evidence has been collected indicating that quan-
tum machine learning (QML) models, trained throughout chemical space, hold great promise to
dramatically reduce the cost for predicting quantum properties, such as atomization energies of
molecules, for arbitrary out-of-sample molecules [RTMvL12b, PWJ`13, MRG`13a, SAC`17,
PKLAG15, FLvLA16, DBCC16, CTS`17, FHH`17, HvL17a, BDP`17a, GSR`17, SSK`18,
FCHvL18]. The core idea of QML is to learn the implicit mapping from geometrical and com-
positional information encoded in nuclear charges and positions to corresponding electronic
properties from a set of training molecules with precomputed properties at a specific level of the-
ory. The knowledge thus obtained from training is then applied to molecules out-of-sample, i.e.,
molecules not in the training set. Nowadays, QML is a well-established technique and has sev-
eral supervised learning variants, including mainly neural network [Beh11, SAC`17, PKLAG15]
and kernel ridge regression [RTMvL12b, BKC13, BPKC10]. Currently, most of the efforts to-
wards QML in literature are devoted to developing more efficient molecular representations
[HvL16, HvL17a, FCHvL18] and adapting machine learning models to a growing number of
applications [JK17, GBM17, PKLAG15]. Recent overviews on the field were published in
Refs. [RvL17, vL18, HSL18] and an entire issue in J. Chem. Phys. was recently devoted to the
theme of "Data-enabled theoretical chemistry"[RvLB18].

This progress was made possible due to the advent of modern computers which enabled rou-
tine calculations of electronic properties such as ground state energies for large training sets of
medium-sized organic molecules [RDRvL14a, SIR17, GVMVDS18] using common density func-
tional approximations [KH15, CMSY12]. While QML prediction errors have been converged
to values smaller than DFT accuracy [FHH`17], the predictive power of any QML model in-
herently hinges on the accuracy of the employed reference data used for training. However,
while the latest machine learning models are now able to make rather accurate and yet efficient
predictions, the time required to compute training samples for large datasets with chemical
accuracy is still prohibitive. More specifically, in order to routinely match the experimental
uncertainty of thermochemistry, the highly coveted “chemical accuracy” of „1 kcal/mol, typi-
cal approximations made within density functional theory do not suffice, and computationally

105

106 5 Boosting quantum machine learning models with multi-level combination technique

expensive theories, e.g., CCSD(T) in a large basis, have to be used even when dealing just
with closed-shell molecules in relaxed geometries. Unfortunately, due to its substantially larger
computational complexity, the routine generation of CCSD(T) numbers in large basis sets for
thousands of training molecules remains prohibitive.

The hierarchies encoded in model chemistries, well established in quantum chemistry, can
be used to exploit systematic trends in cancellation of errors among different levels of the-
ory, as proposed and demonstrated by Pople and co-workers [Pop99, HJO00]. Composite
methods are based on these ideas [Kar16a], and include, among many others, Gaussian-n theo-
ries [CRTP91a, CRR`99, CRRP00], the Weizmann-n methods [MO99, BOA`04], and complete
basis set (CBS) methods [OPMJ96, MJFOP99, MJFOP00]. They can reach chemical accuracy
at the computational cost of combinations of more efficient models. When it comes to chemical
space, the Pople diagram is a two-dimensional display of the relationship of the size of any
molecule and level of theory [Pop65]. Pople diagrams can easily be extended to accommodate
additional or other dimensions such as relativistic effects [KCY`15] or accuracy [Kar90]. In
this study, we apply the idea of a Pople diagram to combine varying levels of theory in the
training set of QML models (See Fig. 1 for the general idea). More specifically, we apply the
sparse-grid combination (C) technique to estimate the optimal balance among (i) electron cor-
relation (HF, MP2, CCSD(T)), (ii) basis set size (sto-3g, 6-31g, cc-pvdz), and (iii) number of
organic molecules. We find that the resulting CQML models require substantially less training
instances at the computationally most demanding target level of theory.

To showcase our new developments, we will discuss a series of multi-level and multi-space
machine learning models, as well as results for molecules from the QM7b dataset [MRG`13b].
Using several levels in the space of electron correlation approximations already leads to a very
strong improvement in the learning results, with respect to the amount of necessary training
data at target accuracy. Further improvement is found by adding different levels of basis sets.

This paper is structured as follows: Section 5.3 briefly introduces the CQML model, as well
as the data sets used for training and testing. In Section 5.4, results of the CQML model
are presented and discussed for 2D and 3D CQML models. Finally, Section 5.5 summarizes
the main-findings, draws general conclusions and presents an outlook. Appendix Section 5.6
provides detailed methodological information to facilitate reproducibility of our findings.

5.2 Computational Details

5.2.1 Datasets

Two datasets were used for proof of principle: QM7b[MRG`13b] and 6k constitutional iso-
mers[RDRvL14b] (dubbed ‘CI9’), both are subsets of GDB-17 universe[RvDBR12, FBR05].
QM7b is composed of molecules with up to 7 heavy atoms, including C, N, O, S and Cl (H not
counted), totaling 7211 molecules. Molecules in CI9 correspond to 6095 constitutional isomers
of C7H10O2.

For QM7b molecules, geometries were first optimized at the level of B3LYP/6-31g(d) us-
ing Gaussian 09 [FTS`], then single point calculations were calculated using three levels of
theory (HF, MP2, CCSD(T)) and three basis sets (sto-3g, 6-31g and cc-pvdz) using Molpro
[WKK`15], resulting in 9 single point energies per molecule.

5.3 Theory 107

For the CI9 molecules, three different methods were used: PM7, B3LYP/6-31g(2df,p) and
G4MP2. Relaxed geometries and energies were retrieved directly from reference [RDRvL14b]
for the latter two methods, while PM7 relaxed geometries and energies were obtained using
MOPAC2016. [MOP]

5.2.2 QML details

We used both, the sorted Coulomb matrix [RTMvL12a, HMB`13] and SLATM [HvL17a] for
modeling the CI9 data set, while SLATM [HvL17a] only was used for QM7b. Though slightly
better performing representations have been published previously, such as SOAP [BDP`17b,
WMC18], aSLATM [HvL17a] or FCHL [FCHvL18], comparison between CM and SLATM re-
sults indicates that trends are stable and that the conclusions drawn are independent of choice
of representation. As kernel-functions, we have always chosen the Laplace kernel e

´}Rq´Ri}1
σ

with σ being a hyper-parameter. The hyper-parameter σ was optimized manually and con-
verged to σ “ 400. Furthermore we use a Lavrentiev regularization of size 10´10. All presented
errors are mean absolute error (MAE) comparing the prediction by the CQML method with
the true solution of the target theory level. The MAE is computed as out-of-sample error over
200 randomly chosen molecules that are not part of the training data set. These results are
averaged over 20 training runs. Note that we randomly choose the N`M“0 training molecules
on the lowest level, while randomly selecting subsets of them on higher levels. This sequence
of drawing ensures the nestedness of all the training samples.

5.3 Theory

In this section, we start by reviewing systematic error cancellation, composite methods, the
CQML approach, kernel ridge regression based QML and ∆-ML [RDRvL15], as well as two-,
and d-dimensional CQML.

5.3.1 From Pople diagrams to CQML

Telescoping series, as a means to systematic convergence of error cancellation, are a well es-
tablished mathematical tool. In short, if an is a sequence of numbers, then

N
ÿ

`“1
pa` ´ a`´1q “ aN ´ a0, (5.1)

and if we define ∆`
`´1 “ a` ´ a`´1 and a0 “ 0, one has

aN “ a0 `

N
ÿ

`“1
∆`

`´1. (5.2)

Error cancellation is also at the root of many common practices in theoretical chemistry. Most
notable are composite methods [CRTP91a, CRR`99, CRRP00, MO99, BOA`04, OPMJ96,
MJFOP99, MJFOP00, GHH11, GHH14, CGH18], recently reviewed in Ref. [Kar16b], which

108 5 Boosting quantum machine learning models with multi-level combination technique

Figure 5.1: Adaptation of Pople diagram involving various levels of theory (abscissa) and
molecular spaces (ordinate). The wide arrow indicates how to best approximate
highly accurate solutions (solid black circle) of Schrödinger’s equation by com-
bining ever improving levels of theory with an exponentially decreasing number
of molecules used for training of machine learning models. Qualitative estimates
of constant cost-benefit ratios (bold diagonals) correspond to Pareto-optimal so-
lutions which can be sampled using the CQML approach presented herewithin.
For example, training data consisting of 1 CCSD(T)/cc-pvqz, 4 MP2/6-31g(d),
and 16 HF/sto-3g calculation results can be cheaper and more valuable than 3
CCSD(T)/cc-pvqz results. Two-sided arrows indicate bridges in chemical and
method space.

5.3 Theory 109

correspond to computational protocols which combine various quantum chemical approxima-
tions such that high accuracy (frequently chemical accuracy, i.e. „ 1 kcal/mol) is achieved for
thermodynamic quantities (e.g., atomization enthalpies). Typically, they combine the results
of a high level of theory with a small basis set with methods that employ lower levels of theory
with larger basis sets. Importantly, they impose a computationally much reduced burden when
compared to brute-force convergence in basis set size and electron correlations. For example,
an extensively used composite method called Gaussian-2 (G2), [CRTP91b] approximates the
energy as (starting from a geometry optimized at MP2/6-31g(d) level)

Etrue « EG2 :“ EQCISDpTq{6´311gpdq ` ∆1 ` ∆2 ` ∆3, (5.3)

where further correction terms have been neglected. Note that here and throughout, we denote
approximations and reference results by upper and lower indices, respectively. The individual
terms read,

∆1 “EMP4{6´311gp2df,pq ´ EMP4{6´311gpdq,

∆2 “EMP4{6´311`gpd,pq ´ EMP4{6´311gpdq,

∆3 “EMP2{6´311`gp3df,2pq ` EMP2{6´311gpdq

´ EMP2{6´311gp2df,pq ´ EMP2{6´311g`pd,pq

(5.4)

with ∆1 accounting for the effect of adding the polarization functions, ∆2 correcting for the
diffuse functions and ∆3 correcting for the larger basis set as well as preventing contributions
from being counted twice in ∆1 and ∆2, respectively.

Note that the formalism of the composite method corresponds to a sophisticated extension
of the telescoping series in Equation (5.2). One could also simply rewrite (5.2) as,

ECCSDpTq “EHF ` ∆MP2
HF ` ∆CCSDpTq

MP2 , (5.5)

with all terms obtained for some large basis set. The problem then reduces to define efficient
yet accurate estimates of the ∆s. Here, we introduce the methodology to solve this problem
through generalization of the ∆-ML approach [RDRvL15] in the form of CQML.

5.3.2 The CQML approach

To exploit varying levels of theory in order to improve prediction accuracy, and thereby reduce
the number of necessary costly training instances some of us previously introduced the ∆-
ML approach [RDRvL15]. It uses reference data calculated from a computationally efficient
but inaccurate method as a baseline and estimates the difference to a more expensive but
accurate target level of theory. Numerical results for organic molecules indicated that given an
appropriately chosen baseline method, it is possible to achieve orders of magnitude reduction
in training set size when compared to traditional QML approaches. Many other studies have
already shown the usefulness and applicability of the ∆-ML approach [FLvLA15, BRvLR17,
RHTvL15, RRvL15a, SY18, DOYT17, SR18, SC18, BDP`17b]. Alternatively, efforts have been
made towards training set size reduction based on training set optimization [BRvLR17, HvL17a,
SNL`18, GPS18] or improvements in the representations [HvL16, HR17, BDP`17a, FCHvL18].

110 5 Boosting quantum machine learning models with multi-level combination technique

Figure 5.2: The 3D CQML approach combines multiple levels in the spaces of electron corre-
lation, basis sets, and training molecules. Subspaces with `C ` `B ` `M “ 4 (see
main text for definition of `’s) are colored in red, subspaces with `C ` `B ` `M “ 3
are colored in yellow and subspaces with `C ` `B ` `M “ 2 are colored in blue.
They are given in layers, which is indicated by the colored connecting lines.

To the best of our knowledge, no conceptual improvements or generalizations of the ∆-ML
approach have been proposed so far.

In this work, we generalize the core ideas of ∆-ML [RDRvL15] to arrive at a multi-level com-
bination technique QML (CQML) approach. CQML is a unified kernel ridge regression machine
learning model incorporating training data from several spaces and levels of information. As
proposed by e.g. John Pople [Pop65, Pop99], we distinguish between

1. the space of electron correlation (e.g. MP2) and

2. the space of basis set (e.g. 6-31g), and we also add

3. the space of training molecules (e.g. some training set drawn from QM9 [RDRvL14a]) as
third degree of freedom which can easily be exploited through machine learning models.

We call a specific choice of training information, e.g Hartree-Fock calculations on a 6-31g
basis set done for 256 molecules, a subspace. Within each space, we assume a multi-level hi-
erarchy of growing accuracy and computational complexity. E.g. in electron correlation and
basis set space, one commonly expects that the degree of approximative nature decays sys-
tematically as one goes from HF to MP2 to CCSD(T), or from sto-3g to 6-31g to cc-pvdz,
respectively. In chemical space, it is less obvious how to establish a hierarchy of accuracy. For
the purpose of our approach, we rely on the well established tenet in statistical learning that
the predictive accuracy for out-of-sample molecules increases systematically with training set
size [RW06], which is applicable to chemical space and quantum chemistry as demonstrated
first in 2012 [RTMvL12a]. This finding has by now been confirmed and reproduced within
multiple studies for various quantum properties and system classes [RvL17, vL18]. As such,
and when drawing training molecules at random, we can consider their number made avail-
able to training (e.g. N “ 16, 32, 64 . . .) as the chemical space equivalent to the space of

5.3 Theory 111

theory (e.g. HF/MP2/CCSD(T)) or basis set (e.g. sto-3g/6-31g/cc-pvdz). Generally speaking,
a CQML model built on low levels of theories / basis sets / small number of training molecules,
will result in a model with low accuracy and easily accessible training data. Conversely, includ-
ing more levels in each dimension, the resulting CQML model will become increasingly more
accurate, requiring, however, also access to ever more costly training data. Figure 1 exemplifies
these ideas for various levels of electron correlation, basis sets, and molecular training set sizes.

The sparse grid combination technique known for high-dimensional approximation[BG04,
GSZ92, GH13b, GH13a, GH14, GK00, GK09, HGC07, Pfl97, Rei13, RG18] and quadrature /
uncertainty quantification[HPS13b, HPS13a] in numerical analysis corresponds to a rigorous
means to generate QML models constructed on a combination of sets of different subspaces. The
general idea is to combine the subspaces such that only very few expensive training samples
are needed at target accuracy (e.g. CCSD(T) for cc-pvdz at high sample count), some less
expensive subspaces with higher training sample count are needed, and so on. Figure 5.2
outlines a choice of subspaces by a modified sparse grid combination technique. Here, each
subspace is represented by a colored cube.

In this work, we will first generalize the aforementioned ∆-ML approach to a multi-level
approach that incorporates the space of theories, basis sets, and training molecules. The
CQML approach differs from existing multi-fidelity machine learning models [PGL17] in that
it is (a) generalized to multiple dimensions, and (b) does not unite the various spaces within one
kernel matrix, but rather through a series of independently trained kernels. While the CQML
approach accounts for an arbitrary number of information spaces, for the sake of brevity and
without any loss of generality, we restrict ourselves only to the three spaces discussed above.

5.3.3 Kernel ridge regression and the ∆-ML approach

In order to properly discuss CQML, we first need to briefly recall the principal idea of the
established kernel ridge regression based QML models. With R (some) representation of a
molecule, we denote by E`pRq the ML based approximation of the electronic ground state
property of that molecule at a certain level of theory l. We train the ML model using N training
molecules Ri with i “ 1, . . . , N with corresponding reference energies at the corresponding
specified level, Eref

l pRq. The objective is to predict energy Eref
l for an out-of-sample query

molecule Rq, neither part of training nor validation sets.
The ML model E` within kernel ridge regression is then given by Eref

` pRqq « E`pRqq :“
řN

i“1 α
p`q

i kpRq, Riq, where k is an appropriate unit-less kernel function. For this study, we
always choose the radial basis kernel function, expr´}Rq ´Ri}1{σs (Laplace) with length-scale
σ. Optimization of kernel function space could represent yet another potentially interesting
dimension for future investigations. As described in detail elsewhere [RW06, RvL17], the
coefficients αi are obtained by solving the kernel matrix inversion problem α “ pK ` λIq´1eref

`

for given regularizer λ and reference energy vector e. Here, we use matrix-notation with capital
and small case letters for matrices and vectors, respectively.

The ∆-ML approach [RDRvL15] models the difference between a baseline and target level
of theory, e.g. HF and MP2, respectively. Note, that we here have decided to adapt a slightly
different notation in contrast to Ref. [RDRvL15] in order to facilitate the generalization of the
∆-ML to the CQML approach. Here, PpbqpRq and PptqpRq represent the properties of interest
computed at baseline and target level of theory, respectively. Note that within ∆-ML, Ppbq

112 5 Boosting quantum machine learning models with multi-level combination technique

and Pptq it is not mandatory to estimate the same property, e.g. it could be the ground state
energy in the baseline theory and the enthalpy in the target theory. Hence, the ∆-ML model
prediction is given by

PptqpRqq :“ PpbqpRqq ` ∆t
bpRqq (5.6)

where ∆t
bpRqq “

řN
i“1 αik pRq, Riq. We emphasize that within the ∆-ML model a potentially

costly baseline evaluation of the query compound is still necessary when making a prediction.
This differs from the CQML approach which recovers the original speed of QML by modeling
even the baseline through a machine.

5.3.4 Two-dimensional multi-level learning

The CQML approach generalizes the ∆-ML model to several spaces and levels. This is illus-
trated in Figure 5.2 for three dimensions and levels which we have also considered in this study
(vide infra). To facilitate the discussion, we first discuss the adaptation of the Pople diagram
in order to exemplify the general idea of the CQML approach for the simple case of only two
dimensions. More specifically, we now consider the space of theory and training molecules.
Thereafter, we will also discuss the generalization to three, as well as d-dimensional cases in
Section .

Assuming L levels of theory with running index ` “ 0, 1, . . . , L ´ 1, for which the calculated
energy increases in accuracy a (with respect to an experimentally yet unknown truth) and
computational cost with growing theoretical complexity, a``1 ą a`, for all ` ă L ´ 1. Multi-
level learning in two dimensions is performed as follows

(1) on level ` “ 0 compute reference energies Eref
`“0 for N`“0 molecules and train standard

QML kernel ridge regression model E`“0.

(2) on level ` “ 1 compute reference energies Eref
`“1 for N`“1 ă N`“0 training molecules

(3) Still on level ` “ 1, train a model of the difference between E0 and Eref
1 for the N1

molecules.

(4) repeat recursively until target level ` “ L ´ 1 is reached

Note that while N` and N``1 molecules do not have to be mutual subsets, in this study all
N``1 molecules are also part of the N` molecules out of convenience.

Formally, one can recursively define the intermediate multi-level 2D model E` for ` “

0, 1, . . . , L ´ 1, and built on the lowest level baseline (` “ 0), as

E`pRqq :“ E`´1pRqq `

N
ÿ̀

i

α
p`´1,`q

i k pRq, Riq , (5.7)

where we set E´1 ” 0. For example, the CQML model which combines PM7 (` “ 0), DFT

5.3 Theory 113

(` “ 1), and G4MP2 (` “ 2) reads

E2pRqq “ E1pRqq `

N2
ÿ

i

α
p1,2q

i kpRq, Riq (5.8)

where

E1pRqq “ E0pRqq `

N1
ÿ

j

α
p0,1q

j kpRq, Rjq (5.9)

where

E0pRqq “

N0
ÿ

k

α
p0q

k kpRq, Rkq , (5.10)

where the last term corresponds to the conventional direct QML model of the PM7 energy.
For numerical results obtained from this model, and their discussion vide infra. To compute
the coefficients α

p`q

i , we solve the previously mentioned kernel ridge regression problem.
Let us briefly compare this approach to the conventional ∆-ML models discussed before in

Section 5.3.3. In the single-level case, the resulting model E0 is the direct conventional QML
kernel ridge regression model. In the two-level case, the resulting model E1 bears similarity
with the ∆-ML model, the major difference being that also the baseline is a machine. Thereby,
it becomes possible to use different amounts of training information (N0, N1) on both levels.
Nevertheless, if we chose the training molecules on the first and the second level identical and
skipped regularization in the regression problem, E1 and conventional direct QML would be
identical. And if we chose the training molecules on the first and the second level identical and
built only one ML model (namely of the difference), Eref

1 and ∆-ML would be identical. E2
and higher order approximations have, to the best of our knowledge, not yet been discussed in
the literature.

Using above definition, we did not fix yet how to choose the amount of training samples
on each level. This choice is based on the sparse grid combination technique [BG04, GSZ92,
GH13b, GH13a, GH14, GK00, GK09, HGC07, Pfl97, Rei13, RG18, HPS13b, HPS13a]. Quali-
tatively, the combination technique implies to use many training samples on the lower levels of
theory and to reduce the number of samples to fewer and fewer samples on higher and higher
levels of theory. As we will see, the balance between the amount of training samples per level
can be a point of optimization within our method. In Section 5.4, we discuss our choices of level
balancing based on the sparse grid combination technique. These choices have been evaluated
for different training data, and with respect to two possible optimality measures. Future work
will deal with a more systematic assessment of how to tailor and optimize the relative ratios
of training molecules at each level and in each dimension.

5.3.5 Three- and d-dimensional multi-level learning
Extending Eq. (5.7) to more than two dimensions results in dimension-dependent levels. Table
5.1 provides an exemplifying overview for three dimensions involving basis set (B), electron
correlation (C), and molecular training set (M), with their corresponding levels `B, `C and `M .

Thus, any given combination of levels can be specified as the ordered triplet ` of respective
level indices, ` “ p`C, `B, `Mq. For example, the combination CCSD(T)/cc-pvdz, N1 is encoded

114 5 Boosting quantum machine learning models with multi-level combination technique

Table 5.1: Exemplifying overview of levels in three dimensional multi-level learning for basis
sets (B), electron correlation (C), and molecular training set (M).

level 0 1 2
`C HF MP2 CCSD(T)
`B sto-3g 6-31g cc-pvdz
`M N0 N1 N2

by the triplet ` “ p`C “ 2, `B “ 2, `M “ 1q “ p2, 2, 1q.
In order to extend this principle to even more dimensions, we now generalize this approach

following the lines of the sparse grid combination technique, cf. Appendix Section 5.6. We
introduce for d dimensions corresponding levels `1, . . . , `d, which we collect together in the
d-dimensional multi-index ` “ p`1, . . . , `dq.

Above, d “ 3 and `1 corresponds to `C, `2 corresponds to `B, and `3 corresponds to `M.
Following the notation that the last level index refers to molecular training set size, i.e. `d “ `M,
we define the energy Eref

p`q
given on a subspace `, and the QML model E` for each subspace,

E`pRqq :“
N`d
ÿ

i“1
α

p`q

i k pRq, Riq . (5.11)

Computing the coefficients α
p`q

i for a fixed subspace ` is done by solving the regression problem

Eref
p`qpRjq «

N`d
ÿ

i“1
α

p`q

i k pRj , Riq (5.12)

for all j “ 1, . . . , N`d
.

The generalized CQML machine learning model is then given as

EIpRqq :“
ÿ

`PI
β`

N`d
ÿ

i“1
α

p`q

i k pRq, Riq . (5.13)

In fact, it is the combination of the machine learning models from eq. 5.11 for different sub-
spaces ` that are collected in the index set I. The classical sparse grid combination technique
proposes to use the index set

I :“ t` P Nd|}`}1 “pL ´ 1q ´ i, i P t0, . . . , d ´ 1uu (5.14)

with }`}1 :“
řd

s“1 `s. In the following, the coefficients β` can always be evaluated as[RG18]

β` :“
ÿ

zPt0,1ud

p´1q}z}1χI p` ` zq . (5.15)

Here, the sum is to be understood in the sense that vector z of size d takes all possible
combinations of zeros and ones. Moreover we define the characteristic function χI of index set

5.4 Results and discussion 115

I by

χI p` ` zq :“
"

1 if p` ` zq P I,
0 else. (5.16)

It is well-known [] that the above choice of the index set I and coefficients β` in d “ 2 is
equivalent to the multi-level learning approach from Section 5.3.4.

For d “ 3 the above choice of index set I would lead to the CQML model Ep2,2,2q with

Ep2,2,2qpRqq “Ep0,2,0qpRqq ´ 2Ep0,1,0qpRqq ` Ep1,1,0qpRqq ` Ep0,1,1qpRqq ´ 2Ep1,0,0qpRqq

` Ep0,0,0qpRqq ´ 2Ep0,0,1qpRqq ` Ep2,0,0qpRqq ` Ep1,0,1qpRqq ` Ep0,0,2qpRqq

(5.17)

and `C, `B, `M “ 0, . . . , 2, exemplified with the spaces discussed in Section 5.1. Note, however,
that this choice does not use any training data from the target subspace, here CCSD(T)
calculations with a cc-pvdz basis set. In practice, it is preferable to include the corresponding
subspaces with this accuracy to the training set, at least with a small training set size, in order
to include the physics of the corresponding target subspace. To this end, in d “ 3, we shift the
index set I such that the subspace choice from Figure 5.2 is achieved. The resulting index set
becomes

Ishifted :“ tp`C , `B, `M q|`C , `B P r0, 2s, `M P r0, 4s, `C ` `B ` `M P t2, 3, 4uu (5.18)

The corresponding CQML model then becomes Eshifted
p2,2,2q

, cf. Appendix Section 5.6 and reads

Eshifted
p2,2,2q

pRqq “ ´ 2Ep1,2,0qpRqq ` Ep0,2,0qpRqq ´ 2Ep0,2,1qpRqq ` Ep2,2,0qpRqq

` Ep1,2,1qpRqq ` Ep0,2,2qpRqq ´ 2Ep2,1,0qpRqq ` Ep1,1,0qpRqq

´ 2Ep1,1,1qpRqq ` Ep0,1,1qpRqq ´ 2Ep0,1,2qpRqq ` Ep2,1,1qpRqq

` Ep1,1,2qpRqq ` Ep0,1,3qpRqq ` Ep2,0,0qpRqq ´ 2Ep2,0,1qpRqq

` Ep1,0,1qpRqq ´ 2Ep1,0,2qpRqq ` Ep0,0,2qpRqq ´ 2Ep0,0,3qpRqq

` Ep2,0,2qpRqq ` Ep1,0,3qpRqq ` Ep0,0,4qpRqq

(5.19)

with `C, `B, `M “ 0, . . . , 2. The reader is referred to Appendix Section 5.6 for more details of
the CQML derivation.

5.4 Results and discussion

Before entering the detailed discussion of our results, we now briefly discuss the use of learning
curves as a measure of machine learning model quality. Clearly, reporting a single out-of-
sample error for any machine learning model is hardly meaningful: It is the very point of
machine learning that models should improve with training set size. Vapnik and co-workers
discussed already in the nineties that prediction errors, i.e. out-of-sample estimates of statisti-
cally estimated functions, decay inversely with training set size N . More specifically, for kernel

116 5 Boosting quantum machine learning models with multi-level combination technique

ridge regression models (used throughout this study), the leading prediction error term was
shown to be proportional to a{N b, where a and b are proportionality constant and power law
exponent, respectively [CJS`94, MFM`96, Vap13]. In order to facilitate comparison among
models, it is therefore recommended practice [vL18] to discuss the performance in terms of
learning curves on log-log scales, i.e. for prediction errors decaying linearly with training set
size, i.e. logpErrorq “ logpaq ´ b logpNq. Saturation of errors indicates failure to learn; and
small off-sets and steep slopes indicate preferable models.

5.4.1 Data

For all the „7’000 QM7b molecules [MRG`13a], we have calculated total energies for all
combinations among the various levels of correlation energies (HF, MP2, CCSD(T)) and basis
set sizes (sto-3g, 6-31g, cc-pvdz). Resulting effective atomization energies (see SI for the entire
data set), are shown within scatter-plots in Fig. 5.3. Depending on stoichiometry and size, the
molecules spread out over the various levels and dimensions.

More specifically, molecules can be divided into two clusters: the one dominating the dis-
tribution is almost sulfur-free; while the other cluster of molecules, clearly separated from the
majority, contains sulfur atoms (see bottom row in Fig. 5.3). This pattern indicates that sto-3g
and 6-31g are too small basis sets, and should not be used to describe S containing molecules.
By comparing the three figures in each column of the first three rows in Figure 5.3, one can see
that the shape of distribution changes significantly upon introduction of electron correlation
(going from HF treatment to the MP2). When going from MP2 to CCSD(T), however, the
change in the distribution is barely noticeable.

Considering the right hand panel in the third row in Fig. 5.3, the color code corresponds
exactly to the correlation energy contribution to the atomization energy, as estimated by
CCSD(T) - HF within cc-pvdz basis. As one would expect, the larger the molecule, the more
electron correlation energy is being contributed. The two hundred molecules with the largest
and smallest correlation energy contribution to the atomization energy are on display in Fig. 5.4.
We note that molecules with high degree of saturation exhibit the largest amount of electron
correlation in their atomization energy, while atomization energies of molecules with multi-
ple double bonds, triple bonds, and aromatic moieties contain the least electron correlation
energy. This trend is to be expected because the electrons in unsaturated bonding patterns
can contribute less to binding than in saturated species, thereby also decreasing their electron
correlation energy contribution to binding.

The reason for developing the CQML model is based on the hypothesis that it will system-
atically exploit all these underlying implicit correlations which are on display in these figures.

5.4.2 2D results for QM7b

As a first test, we have investigated our QM7b derived data set for the two dimensional (d “ 2)
case of atomization energies at a fixed basis set (cc-pvdz) for three levels of electron correlation,
i.e. HF (`C “ 0), MP2 (`C “ 1) and CCSD(T) (`C “ 2). The second dimension corresponds to
three variable molecular training data set sizes (`M “ 0, 1, 2). Their relative extent is fixed at
ratios which are independent of absolute training set size. In this study, we considered two such
sets of ratios (s “ 1 and s “ 2) which reflect different sample size increases for higher levels.

5.4 Results and discussion 117

Figure 5.3: Scatter plots for QM7b. Size in chemical space as measured by 1-norm of Coulomb
matrix [a.u.] (i.e., }CM}1) vs. energy differences [kcal/mol] due to various basis set
size differences for HF (first row), MP2 (second row), and CCSD(T) (third row).
The colour code corresponds to the atomization energy difference ∆ [kcal/mol]
between electron correlation models at cc-pvdz for MP2 vs. CCSD(T) (left), HF
vs. MP2 (mid), and HF vs. CCSD(T). In the upper leftmost panel, the brackets
enclosing N indicate that nitrogen atoms may or may not be present. The bottom
row corresponds to the 2D projection of the third row.

118 5 Boosting quantum machine learning models with multi-level combination technique

Figure 5.4: The two hundred QM7b molecules with largest (Left) and smallest (Right) electron
correlation energy contributions to the atomization energy (CCSD(T) - HF within
cc-pvdz basis [kcal/mol]), respectively. See SI for the complete data set. White: H,
gray: C, yellow: S, red: O, blue: N, green: Cl.

Table 5.2: Level-dependent ratios between training set sizes for the two sample size increases
s considered. L is the total number of levels.

s r`M“L´1 r`M“L´2 r`M“L´3
1 1 2 4
2 1 4 16

These ratios are summarized in Table 5.2. The number of training molecules N`M on each level
of the CQML with d “ 2 as a function of training set size at the highest level N`M“2 is thus
given by N`M “ r`M ˆ N`M“2, where r`M is the ratio as displayed in Table 5.2. Recall that all
ML model results presented in this section have been obtained using kernel ridge regression, a
Laplacian kernel, and the SLATM [HvL17a] representation.

In Figure 5.5, various learning curves for atomization energies, estimated according to Eq. 5.7,
are shown. First of all, we note the rapid and systematic lowering for all CQML models as
training set size increases. The models exhibit differing off-sets, and similar slopes, in line
with previous results for training-set optimization experiments using ensembles of training sets
within genetic optimization protocols [BRvLR17]. The learning curves of conventional QML
pass the chemical accuracy threshold („1 kcal/mol) at „ 41000 training molecules calculated
at target level, CCSD(T)/cc-pvdz. This learning curve has a slightly larger off-set with respect
to the original SLATM benchmark results (see supplementary materials in Ref. [HvL17b]) due
to the use of (i) the Laplacian instead of a Gaussian kernel function, (ii) B3LYP rather than
PBE0 geometries, and (iii) CCSD(T) rather than PBE0 energies.

5.4 Results and discussion 119

Figure 5.5: Learning curves for CCSD(T) atomization energies of QM7b molecules for var-
ious CQML models. Level ratios considered include s “ 1 and s “ 2 (See Ta-
ble 5.2). Upper left: 2D-CQML at fixed basis set (cc-pvdz) including 2 (MP2,
CCSD(T))/(HF,CCSD(T)), and 3 levels of electron correlation treatment (HF,
MP2, CCSD(T)). Upper right: 2D-CQML (green) at fixed electron correlation
treatment (CCSD(T)) for 3 basis sets (sto-3g, 6-31g, cc-pvdz). 3D-CQML (red)
exploiting basis set size (sto-3g, 6-31g, cc-pvdz) and electron correlation treatment
(HF, MP2, CCSD(T)). Bottom: Learning curves for RMSE (root mean square er-
ror) and MAE for the machines in the Upper right panel with s “ 2. Note that the
horizontal axis in all three figures may also be chosen to represent the number of
training samples from other levels, which can be obtained by rescaling the current
axis with a ratio of s, as shown in Table 5.2.

120 5 Boosting quantum machine learning models with multi-level combination technique

Addition of MP2 reference energies of further molecules affords a systematic decrease in the
learning off-set resulting in „2’000 and „1’000 CCSD(T) training molecules necessary to reach
chemical accuracy for s “ 1 and s “ 2, respectively. The corresponding necessary MP2 training
set sizes (not shown in the figure) amount to 4’000 molecules for both s-values (see Table 5.2).
Slightly worse results are obtained by replacing MP2 reference energies with HF energies. This
result may seem puzzling, but is in full agreement with what we have found in Figure 5.3, i.e.,
the values of ∆CCSDpTq

MP2 and ∆MP2
HF are of the same magnitude. This result also implies the

possibility to optimize the levels of theory by minimizing the computational cost, meanwhile
retaining the accuracy.

Adding Hartree-Fock treatment for additional training molecules, we observe even further
improvement, reaching chemical accuracy already at „1’000 and „300 CCSD(T) training
molecules for s “ 1 and s “ 2, respectively. According to the ratios in Table 5.2, the corre-
sponding necessary MP2 and HF training set sizes (not shown in the figure) amount respectively
to 2’000 and 4’000 for s “ 1, and to 1’200 and 2’400 for s “ 2.

These results are very encouraging; they suggest that reductions by an order of magni-
tude are possible with respect to high-level reference numbers (from expensive computation or
experiment) necessary to reach chemical accuracy. Effectively, the CQML model appears to ex-
ploit correlations inherent among the various approximation levels that live within hierarchical
spaces of theories.

5.4.3 3D results for QM7b

We have also studied the extension of the 2D-CQML model by a third dimension (d “ 3) which
explicitly introduces the effect of basis set size on atomization energies. More specifically, we
have considered sto-3g (`B “ 0) as our lowest level, 6-31g (`B “ 1) as an intermediate size, and
cc-pvdz (`B “ 2) as the largest set. Obviously, larger basis set choices as well as additional
levels with more subtle differences could have been included just as well. Here, we assume that
the general trend and the conclusions drawn are not affect by the relatively modest size of the
basis sets employed.

In Fig. 5.5, we show corresponding learning curves of 2D-CQML models which connect the
different basis sets according to Eq. 5.7 with just one correlation energy model, CCSD(T). In
line with the behavior encountered above for the fixed basis set CQML models, a systematic
improvement is found for MAE as well as RMSE. The error approaches chemical accuracy
already with „1’000 training examples with the largest basis used (cc-pvdz). Again, increasing
the ratios between levels by going from s “ 1 to s “ 2 (see Table 5.2) leads to systematic
lowering of the learning curve.

Finally, when combining multiple basis set and electron correlation levels into a single 3D-
CQML model, obtained according to Eq. 5.19, the most favorable learning curves are obtained
for MAE as well as for RMSE (See Fig. 5.5). For s “ 1 and s “ 2, extrapolation indicates that
chemical accuracy can be reached with just 500 and 100 training instances at CCSD(T)/cc-
pvdz level, respectively. Note that the learning curves end already for relatively small training
set sizes because the necessary number of molecules required at lower levels of theory rapidly
reaches the maximal number of available molecules in QM7b. For example, for the s “ 2 case,
100 training molecules at the highest level combination would have required 100ˆ44 = 25,600
training molecules at the lowest level combination. However, QM7b is comprised of only 7’211

5.4 Results and discussion 121

Figure 5.6: Prediction errors of atomization energies in CI9 data set (consitutional isomers of
C7H10O2) vs. number of training molecules with G4MP2 energies for various 2D-
CQML models. Results differ by representation (SLATM vs. CM) and number of
levels included.

molecules. As such, this is an artefact of the finite size of QM7b, and we expect these learning
curves to further decay linearly when using larger data sets in the future.

Overall, these results amount to numerical evidence that it is beneficial to include not only
multiple levels but also multiple dimensions. The obvious consequence is that an additional
substantial reduction in need for high-level reference numbers (from expensive computation or
experiment) is possible through the use of CQML based exploitation of training data obtained
for smaller basis sets and more approximate electron correlation models. We believe that this
is possible because of inherent error-cancellation between various levels and dimensions.

Furthermore, the success of CQML indicates that we can push the efforts further so as to
achieve an absolute prediction error on par with experiments by taking advantage of even
higher level theory of reference data, such as CCSD(T)-F12/cc-pvqz or Quantum Monte Carlo
(QMC). More specifically, the highest level of theory adopted in this study is CCSD(T)/cc-
pvdz, to which the prediction errors are referenced. As a result, the predictive power of CQML
can match at best CCSD(T)/cc-pvdz. Considering that we need very few training instances at
the highest level, we are optimistic that at a very low cost (cf. brute force high-level-of-theory
calculation), we can eventually achieve chemical accuracy for energy predictions of arbitrary
out-of-sample molecules. This will be explored in future work.

5.4.4 2D results for CI9

For the stoichiometrical isomers C7H10O2, data set CI9, we have also investigated the 2D-
CQML model corresponding to Eq. 5.7. The resulting models differ from the previous 2D-
CQML models in that they unite energy approximation effects and basis sets into a single
dimension (PM7, B3LYP/6-31g(d), G4MP2). Furthermore, and in analogy to the original ∆-
ML model [RDRvL15, SNZ`18, RRvL15b, RHTvL15, BDJTVL18, KO00], all small changes

122 5 Boosting quantum machine learning models with multi-level combination technique

in geometry due to use of different level of theory, are also being accounted for through the
ML model. As such, only PM7-quality input geometries are required for the 2D-CQML models
discussed in this section. Resulting learning curves are shown in Fig. 5.6 for two different
representations, the Coulomb matrix [RTMvL12a, HMB`13] and SLATM [HvL17b], as well as
for two different number of levels (L “ 2 and L “ 3).

Again, when compared to conventional QML, we note systematic and improved (through
lower off-sets) learning as the number of different levels increases from two to three. The
relative performance for Coulomb matrix and SLATM meets the expected trend [FCHvL18],
SLATM systematically leading to a substantially lower off-set. These results suggest a certain
independence of the CQML methodology from other salient features of QML models, such as
training set selection [BRvLR17, HvL17b] or choice of representation [HvL16, FCHvL18]. In
this case, the best 2D-CQML SLATM based model reaches chemical accuracy with respect to
G4MP2 based on a training set consisting of „1’000, 2’000, and 4’000 at G4MP2, B3LYP/6-
31g(d), and PM7 level reference results, respectively.

5.5 Conclusions

We have extended the ideas manifested in Pople-diagrams within the systematic framework of
the multi-level sparse grid combination technique and machine learning. A generalized CQML
model has been presented, and we have demonstrated its performance for various 2D variants
and for one 3D application using atomization energies of organic molecules as property of in-
terest. Using learning curves to compare models, we have found for all cases investigated that
the addition of levels and spaces enables a systematic and substantial reduction in necessary
training data at the highest level of theory. As such, we have shown how to construct QML
models for which an expensive training molecule can be replaced by multiple cheaper training
molecules. Due to the unfavourable polynomial scaling and large prefactors of the more ex-
pensive quantum approximations, such trade-offs can deliver significantly more accurate QML
models at constant training data compute budget. In conclusion, our numerical findings support
the idea that there is an additional “knob” one can use to improve QML models: In addition
to improved representations [HvL16, FCHvL18] or training set selection [BRvLR17, HvL17b]
one can also exploit the intrinsic correlations among the various hierarchies which exist among
different levels of approximations.

For future work, we will consider the inclusion of more intermediate levels, e.g. the various
rungs on Jacob’s ladder, or MP4, CCSD, CCSDT(Q), etc., or continuous changes in basis set
size through plane-waves. Other dimensions, such as relativistic effects, spin-orbit coupling,
or nuclear quantum effects can be envisioned. While we have focussed on atomization ener-
gies only for this study, we will consider CQML models of other quantum properties within
subsequent studies. Technical settings can also be investigated, e.g. the relative amount of
training data obtained at different levels (currently set globally through parameter s), could
still be adapted in a locally optimal manner. Finally, we plan to include this implementation
in qmlcode [CFH`17].

5.6 Appendix: Derivation of the combination technique for quantum machine learning 123

5.6 Appendix: Derivation of the combination technique for
quantum machine learning

In applied mathematics, the sparse grid combination technique is a means to approximate, e.g.,
high-dimensional functions. Lets assume that such a function f is in some (function) space
V :“ V p1q b V p2q b ¨ ¨ ¨ b V pdq. That is, it is in the tensor product of d spaces. Then, we
introduce for each of the Lm-dimensional function spaces V pmq a series of subspaces of lower
dimension

V
pmq

0 Ă V
pmq

1 Ă V
pmq

j Ă . . . Ă V
pmq

Lm
(5.20)

(indicated by the lower index). Classic (full tensor product) approximation would now approx-
imate this function f on a level j in the space Vj :“ V

p1q

j b V
p2q

j b ¨ ¨ ¨ b V
pdq

j . However, this
leads to the so-called curse of dimensionality, i.e. the exponential growth in computational
work with growing dimension d.

In many cases, the sparse grid combination technique allows to approximate f in a much
cheaper way. This is done by recursively introducing the sparse approximation space V̂j with

V̂
pdq

j :“
j
ÿ

k“0

´

V
pdq

j´k ´ V
pdq

j´1´k

¯

b V̂
pd´1q

k , (5.21)

where V̂
pd´1q

k is the sparse approximation space

V̂
pd´1q

j :“
j
ÿ

k“0

´

V
pd´1q

j´k ´ V
pd´1q

j´1´k

¯

b V̂
pd´2q

k . (5.22)

That is, it is recursively built from the first d ´ 1 spaces in the same way.
In this work, we transfer this approach to the field of quantum machine learning. To this

end, we provide a derivation for the combination technique for quantum machine learning in
two and three dimensions / spaces. Let us first briefly introduce a general machine learning
model for a given subspace p`C , `B, `M q. Note that we assume here that `C , `B, `M P t0, . . . , Lu.
The general ML model for a given subspace reads as

Ep`C ,`B ,`M qpRqq :“
N`M
ÿ

i“1
α

p`C ,`B ,`M q

i kpRq, Riq . (5.23)

We identify this model with some subspace V
p1q

`C
bV

p2q

`B
bV

p3q

`M
. Following equation 5.21, the two-

dimensional combination technique for QML on level j2 for the spaces of theory and training
set size and a fixed basis set level `B can be introduced as

Epj2,`B ,j2qpRqq :“
j2
ÿ

k2“0
Epj2´k2,`B ,k2qpRqq ´ Epj2´1´k2,`B ,k2qpRqq (5.24)

Note that, whenever a level index becomes negative, we assume the machine learning model to

124 5 Boosting quantum machine learning models with multi-level combination technique

be exactly zero, i.e. Ep´1,¨,¨q ” Ep¨,´1,¨q ” Ep¨,¨,´1q ” 0 . For the choice of j2 “ 2 and `B “ 2, we
can explicitly derive

Ep2,2,2qpRqq “
`

Ep2´0,2,0qpRqq ´ Ep2´1´0,2,0qpRqq
˘

`
`

Ep2´1,2,1qpRqq ´ Ep2´1´1,2,1qpRqq
˘

`
`

Ep2´2,2,2qpRqq ´ Ep2´1´2,2,2qpRqq
˘

“
`

Ep2,2,0qpRqq ´ Ep1,2,0qpRqq
˘

`
`

Ep1,2,1qpRqq ´ Ep0,2,1qpRqq
˘

`
`

Ep0,2,2qpRqq ´ Ep´1,2,2qpRqq
˘

“ Ep2,2,0qpRqq ´ Ep1,2,0qpRqq ` Ep1,2,1qpRqq ´ Ep0,2,1qpRqq ` Ep0,2,2qpRqq

(5.25)

Note that we have the equalities

Ep2,2,0qpRqq ´ Ep1,2,0qpRqq “

N2
ÿ

i

α
p1,2q

i kpRq, Riq ,

Ep1,2,1qpRqq ´ Ep0,2,1qpRqq “

N1
ÿ

i

α
p0,1q

i kpRq, Riq ,

Ep0,2,2qpRqq “

N0
ÿ

i

α
p0q

i kpRq, Riq ,

(5.26)

with the notation from Section 5.3.4. That is, model Ep2,2,2q, as derived here, is exactly the
model discussed in Section 5.3.4.

Based on the two-dimensional combination technique model, we can now recursively build
a three-dimensional combination technique further integrating the space of basis set size and
with the global three-dimensional level j3 as follows

Epj3,j3,j3qpRqq :“
j3
ÿ

k3“0
Epk3,j3´k3,k3qpRqq ´ Epk3,j3´1´k3,k3qpRqq . (5.27)

This construction uses the definition of the two-dimensional combination technique in a recur-
sive fashion.

We finally exemplify the tree-dimensional combination technique for j3 “ 2. That is, we first
expand the recursive model for the three-dimensional combination technique by

Ep2,2,2qpRqq “
`

Ep0,2´0,0qpRqq ´ Ep0,2´1´0,0qpRqq
˘

`
`

Ep1,2´1,1qpRqq ´ Ep1,2´1´1,1qpRqq
˘

`
`

Ep2,2´2,2qpRqq ´ Ep2,2´1´2,2qpRqq
˘

“
`

Ep0,2,0qpRqq ´ Ep0,1,0qpRqq
˘

`
`

Ep1,1,1qpRqq ´ Ep1,0,1qpRqq
˘

`
`

Ep2,0,2qpRqq ´ Ep2,´1,2qpRqq
˘

“
`

Ep0,2,0qpRqq ´ Ep0,1,0qpRqq
˘

`
`

Ep1,1,1qpRqq ´ Ep1,0,1qpRqq
˘

` Ep2,0,2qpRqq .

(5.28)

Then, we expand each of the term by means of the two-dimensional combination technique.

5.6 Appendix: Derivation of the combination technique for quantum machine learning 125

Thus we compute

Ep0,2,0qpRqq “ Ep0´0,2,0qpRqq ´ Ep0´1´0,2,0qpRqq “ Ep0,2,0qpRqq ,

Ep0,1,0qpRqq “ Ep0´0,1,0qpRqq ´ Ep0´1´0,1,0qpRqq “ Ep0,1,0qpRqq ,

Ep1,1,1qpRqq “ Ep1´0,1,0qpRqq ´ Ep1´1´0,1,0qpRqq ` Ep1´1,1,1qpRqq ´ Ep1´1´1,1,1qpRqq

“ Ep1,1,0qpRqq ´ Ep0,1,0qpRqq ` Ep0,1,1qpRqq ,

Ep1,0,1qpRqq “ Ep1´0,0,0qpRqq ´ Ep1´1´0,0,0qpRqq ` Ep1´1,0,1qpRqq ´ Ep1´1´1,0,1qpRqq

“ Ep1,0,0qpRqq ´ Ep0,0,0qpRqq ` Ep0,0,1qpRqq ,

Ep2,0,2qpRqq “
`

Ep2´0,0,0qpRqq ´ Ep2´1´0,0,0qpRqq
˘

`
`

Ep2´1,0,1qpRqq ´ Ep2´1´1,0,1qpRqq
˘

`
`

Ep2´2,0,2qpRqq ´ Ep2´1´2,0,2qpRqq
˘

“
`

Ep2,0,0qpRqq ´ Ep1,0,0qpRqq
˘

`
`

Ep1,0,1qpRqq ´ Ep0,0,1qpRqq
˘

`
`

Ep0,0,2qpRqq ´ Ep´1,0,2qpRqq
˘

“
`

Ep2,0,0qpRqq ´ Ep1,0,0qpRqq
˘

`
`

Ep1,0,1qpRqq ´ Ep0,0,1qpRqq
˘

` Ep0,0,2qpRqq .

(5.29)

Finally, we combine these results with the previous calculations for Ep2,2,2q and obtain

Ep2,2,2qpRqq “ Ep0,2,0qpRqq ´ Ep0,1,0qpRqq ` Ep1,1,1qpRqq ´ Ep1,0,1qpRqq ` Ep2,0,2qpRqq

“ Ep0,2,0qpRqq ´ Ep0,1,0qpRqq

`
“

Ep1,1,0qpRqq ´ Ep0,1,0qpRqq ` Ep0,1,1qpRqq
‰

´
“

Ep1,0,0qpRqq ´ Ep0,0,0qpRqq ` Ep0,0,1qpRqq
‰

`
“`

Ep2,0,0qpRqq ´ Ep1,0,0qpRqq
˘

`
`

Ep1,0,1qpRqq ´ Ep0,0,1qpRqq
˘

` Ep0,0,2qpRqq
‰

“ Ep0,2,0qpRqq ´ 2Ep0,1,0qpRqq ` Ep1,1,0qpRqq ` Ep0,1,1qpRqq ´ 2Ep1,0,0qpRqq

` Ep0,0,0qpRqq ´ 2Ep0,0,1qpRqq ` Ep2,0,0qpRqq ` Ep1,0,1qpRqq ` Ep0,0,2qpRqq

(5.30)

This is exactly the spelled out version of equation 5.17 for Ep2,2,2q.

As discussed in Section 5.3.5, practical considerations motivate us to modify the machine
learning model Ep2,2,2q to further include the training data from subspace p2, 2, 0q, i.e. data from
the most expensive subspace with CCSD(T) calculations on a cc-pvdz basis set. Therefore,
we introduced the shifted machine learning model Eshifted

p2,2,2q
in Section 5.3.5. In principle, it

can be computed by using the modified index set Ishifted together with equations 5.15 and
5.16. However, we can also recursively derive the shifted model by first computing the machine
learning model Ep4,4,4q, which, derived similar to Ep2,2,2q, becomes

Ep4,4,4qpRqq “

Ep0,4,0qpRqq ` Ep0,3,1qpRqq ` Ep1,3,0qpRqq ` Ep0,2,2qpRqq ` Ep1,2,1qpRqq ` Ep2,2,0qpRqq

` Ep0,1,3qpRqq ` Ep1,1,2qpRqq ` Ep2,1,1qpRqq ` Ep3,1,0qpRqq ` Ep0,0,4qpRqq ` Ep1,0,3qpRqq

` Ep2,0,2qpRqq ` Ep3,0,1qpRqq ` Ep4,0,0qpRqq ´ 2Ep0,3,0qpRqq ´ 2Ep0,2,1qpRqq

126 5 Boosting quantum machine learning models with multi-level combination technique

´ 2Ep1,2,0qpRqq ´ 2Ep0,1,2qpRqq ´ 2Ep1,1,1qpRqq ´ 2Ep2,1,0qpRqq ´ 2Ep0,0,3qpRqq

´ 2Ep1,0,2qpRqq ´ 2Ep2,0,1qpRqq ´ 2Ep3,0,0qpRqq ` Ep0,2,0qpRqq ` Ep0,1,1qpRqq

` Ep1,1,0qpRqq ` Ep0,0,2qpRqq ` Ep1,0,1qpRqq ` Ep2,0,0qpRqq

In a second step, we exclude those subspaces, that are not contained in Ishifted, i.e. the sub-
spaces for the multi-indices

p0, 4, 0q, p0, 3, 1q, p1, 3, 0q, p3, 1, 0q, p3, 0, 1q, p4, 0, 0q, p0, 3, 0q, p3, 0, 0q . (5.31)

For symmetry reasons and to keep a valid combination technique rule for arbitrary index sets,
we also have to exclude one contribution of the subspaces with multi-indices

p2, 0, 0q, p2, 1, 0q, p2, 0, 1q . (5.32)

The resulting shifted machine learning model Eshifted
p2,2,2q

is given in Eq. 5.19.

Supporting information

Geometries are provided as xyz files. Two types of energy data are available for each of the
three basis sets (sto-3g, 6-31g and cc-pvdz), i.e., the total energy (E) and effective averaged
atomization energies (E˚). The latter is defined as E ´

ř

I nI ˚ eI , where nI is the number
of atom I in the molecule and eI is the effective atomic energy of atom I obtained through a
linear least square fit of E “

ř

I nI ˚ eI for all molecules in the dataset. Free atom energies
for all basis sets and electron methods are also included. Every type of energy data for any
basis set used is given as a text file, consisting of three columns representing HF, MP2 and
CCSD(T) energies, respectively.

Acknowledgement

We are grateful for discussions with P. D. Mezei and M. Schwilk. This collaboration is mainly
being funded by the Swiss National Science foundation through 407540_167186 NFP 75 Big
Data. OAvL also acknowledges additional support by the Swiss National Science foundation
(No. PP00P2_138932, 200021_175747, NCCR MARVEL). Some calculations were performed
at sciCORE (http://scicore.unibas.ch/) scientific computing core facility at University of Basel.

References

[BDJTVL18] T. Bereau, R. A. DiStasio Jr, A. Tkatchenko, and O. A. Von Lilienfeld. Non-
covalent interactions across organic and biological subsets of chemical space:
Physics-based potentials parametrized from machine learning. The Journal of
Chemical Physics, 148(24):241706, 2018.

[BDP`17a] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, and

5.6 Appendix: Derivation of the combination technique for quantum machine learning 127

M. Ceriotti. Machine learning unifies the modeling of materials and molecules.
Science Advances, 3(12), 2017.

[BDP`17b] A. P. Bartók, S. De, C. Poelking, N. Bernstein, J. R. Kermode, G. Csányi, and
M. Ceriotti. Machine learning unifies the modeling of materials and molecules.
Science advances, 3(12):e1701816, 2017.

[Beh11] J. Behler. Atom-centered symmetry functions for constructing high-dimensional
neural network potentials. J. Chem. Phys., 134(7):074106, 2011.

[BG04] H.-J. Bungartz and M. Griebel. Sparse grids. Acta Numerica, 13:147–269, 2004.

[BKC13] A. P. Bartók, R. Kondor, and G. Csányi. On representing chemical environ-
ments. Phys. Rev. B, 87:184115, May 2013.

[BOA`04] A. D. Boese, M. Oren, O. Atasoylu, J. M. L. Martin, M. Kállay, and J. Gauss.
J. Chem. Phys., 120:4129, 2004.

[BPKC10] A. P. Bartók, M. C. Payne, R. Kondor, and G. Csányi. Gaussian approximation
potentials: The accuracy of quantum mechanics, without the electrons. Phys.
Rev. Lett., 104:136403, Apr 2010.

[BRvLR17] N. J. Browning, R. Ramakrishnan, O. A. von Lilienfeld, and U. Roethlisberger.
Genetic optimization of training sets for improved machine learning models of
molecular properties. J. Phys. Chem. Lett., 8(7):1351, 2017.

[Ced98] G. Ceder. Predicting properties from scratch. Science, 280(5366):1099–1100,
1998.

[CFH`17] A. S. Christensen, F. A. Faber, B. Huang, L. A. Bratholm, A. Tkatchenko,
K.-R. Müller, and O. A. von Lilienfeld. Qml: A python toolkit for quantum
machine learning, 2017.

[CGH18] S. R. Chinnamsetty, M. Griebel, and J. Hamaekers. An adaptive multiscale
approach for electronic structure methods. Multiscale Modeling & Simulation,
16(2):752–776, 2018.

[CJS`94] C. Cortes, L. D. Jackel, S. A. Solla, V. Vapnik, and J. S. Denker. Learning
curves: Asymptotic values and rate of convergence. In Advances in Neural
Information Processing Systems, pages 327–334, 1994.

[CMSY12] A. J. Cohen, P. Mori-Sánchez, and W. Yang. Challenges for density functional
theory. Chem. Rev., 112(1):289–320, 2012. PMID: 22191548.

[CRR`99] L. A. Curtiss, P. C. Redfern, K. Raghavachari, V. Rassolov, and J. A. Pople.
Gaussian-3 theory using reduced moøller-plesset order. The Journal of chemical
physics, 110(10):4703–4709, 1999.

[CRRP00] L. A. Curtiss, K. Raghavachari, P. C. Redfern, and J. A. Pople. Gaussian-3
theory using scaled energies. J. Chem. Phys., 112(3):1125–1132, 2000.

128 5 Boosting quantum machine learning models with multi-level combination technique

[CRTP91a] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople. Gaussian-
2 theory for molecular energies of first-and second-row compounds. J. Chem.
Phys., 94(11):7221–7230, 1991.

[CRTP91b] L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople. Gaussian-2
theory for molecular energies of first-and second-row compounds. The Journal
of chemical physics, 94(11):7221–7230, 1991.

[CTS`17] S. Chmiela, A. Tkatchenko, H. E. Sauceda, I. Poltavsky, K. T. Schütt, and
K.-R. Müller. Machine learning of accurate energy-conserving molecular force
fields. Sci. Adv., 3(5):e1603015, 2017.

[DBCC16] S. De, A. P. Bartok, G. Csanyi, and M. Ceriotti. Comparing molecules and
solids across structural and alchemical space. Phys. Chem. Chem. Phys.,
18:13754–13769, 2016.

[DOYT17] P. O. Dral, A. Owens, S. N. Yurchenko, and W. Thiel. Structure-based sam-
pling and self-correcting machine learning for accurate calculations of poten-
tial energy surfaces and vibrational levels. The Journal of Chemical Physics,
146(24):244108, 2017.

[FBR05] T. Fink, H. Bruggesser, and J.-L. Reymond. Virtual exploration of the small-
molecule chemical universe below 160 daltons. 44(10):1504–1508, 2005.

[FCHvL18] F. A. Faber, A. S. Christensen, B. Huang, and O. A. von Lilienfeld. Alchemical
and structural distribution based representation for universal quantum machine
learning. The Journal of Chemical Physics, 148(24):241717, 2018.

[FHH`17] F. A. Faber, L. Hutchison, B. Huang, J. Gilmer, S. S. Schoenholz, G. E. Dahl,
O. Vinyals, S. Kearnes, P. F. Riley, and O. A. von Lilienfeld. Prediction errors
of molecular machine learning models lower than hybrid DFT error. J. Chem.
Theory Comput., 13:5255–5264, 2017.

[FLvLA15] F. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento. Crystal struc-
ture representations for machine learning models of formation energies. Int. J.
Quantum Chem., 115:1094, 2015. http://arxiv.org/abs/1503.07406.

[FLvLA16] F. A. Faber, A. Lindmaa, O. A. von Lilienfeld, and R. Armiento. Machine
learning energies of 2 million elpasolite pabC2D6q crystals. Phys. Rev. Lett.,
117:135502, Sep 2016.

[FTS`] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R.
Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant,
J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi,
G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara,
K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Ki-
tao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross,
C. Adamo, J. Jaramillo, R. Gomperst, R. E. Stratmann, O. Yazyev, A. J.

5.6 Appendix: Derivation of the combination technique for quantum machine learning 129

Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma,
G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, J. B. Foresman,
J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith,
M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill,
B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople. Gaussian
09. Gaussian Inc. Wallingford CT 2009.

[GBM17] M. Gastegger, J. Behler, and P. Marquetand. Machine learning molec-
ular dynamics for the simulation of infrared spectra. Chemical science,
8(10):6924–6935, 2017.

[GH13a] M. Griebel and H. Harbrecht. A note on the construction of L-fold sparse tensor
product spaces. Constructive Approximation, 38(2):235–251, 2013.

[GH13b] M. Griebel and H. Harbrecht. On the construction of sparse tensor product
spaces. Mathematics of Computation, 82(282):975–994, 2013.

[GH14] M. Griebel and H. Harbrecht. On the convergence of the combination technique,
in: Lect. Notes Comput. Sci. Eng.: “Sparse grids and applications—Munich
2012”, springer, cham. 97:55–74, 2014.

[GHH11] M. Griebel, J. Hamaekers, and F. Heber. Bossanova: A bond order dissec-
tion approach for efficient electronic structure calculations. Oberwolfach Report,
32:1804–1808, 2011.

[GHH14] M. Griebel, J. Hamaekers, and F. Heber. A bond order dissection anova ap-
proach for efficient electronic structure calculations. in: Extraction of Quantifi-
able Information from Complex Systems, springer. pages 211–235, 2014.

[GK00] M. Griebel and S. Knapek. Optimized tensor-product approximation spaces.
Constructive Approximation. An International Journal for Approximations and
Expansions, 16(4):525–540, 2000.

[GK09] M. Griebel and S. Knapek. Optimized general sparse grid approximation spaces
for operator equations. Mathematics of Computation, 78(268):2223–2257, 2009.

[GPS18] K. Gubaev, E. V. Podryabinkin, and A. V. Shapeev. Machine learning of molec-
ular properties: Locality and active learning. The Journal of Chemical Physics,
148(24):241727, 2018.

[GSR`17] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, 2017.

[GSZ92] M. Griebel, M. Schneider, and C. Zenger. A combination technique for the so-
lution of sparse grid problems, in: Iterative methods in linear algebra (Brussels,
1991), north-holland, amsterdam. pages 263–281, 1992.

130 5 Boosting quantum machine learning models with multi-level combination technique

[GVMVDS18] M. M. Ghahremanpour, P. J. Van Maaren, and D. Van Der Spoel. The alexan-
dria library, a quantum-chemical database of molecular properties for force field
development. Scientific data, 5:180062, 2018.

[HGC07] M. Hegland, J. Garcke, and V. Challis. The combination technique and some
generalisations. Linear Algebra and its Applications, 420(2-3):249–275, 2007.

[HJO00] T. Helgaker, P. Jørgensen, and J. Olsen. Molecular Electronic-Structure Theory.
John Wiley & Sons, LTD, 2000.

[HMB`13] K. Hansen, G. Montavon, F. Biegler, S. Fazli, M. Rupp, M. Scheffler, O. A.
von Lilienfeld, A. Tkatchenko, and K.-R. Müller. Assessment and validation
of machine learning methods for predicting molecular atomization energies. J.
Chem. Theory Comput., 9(8):3404–3419, 2013.

[HPS13a] H. Harbrecht, M. Peters, and M. Siebenmorgen. Combination technique based
k-th moment analysis of elliptic problems with random diffusion. Journal of
Computational Physics, 252:128–141, 2013.

[HPS13b] H. Harbrecht, M. Peters, and M. Siebenmorgen. On multilevel quadrature for
elliptic stochastic partial differential equations, in: Lect. Notes Comput. Sci.
Eng.: “Sparse grids and applications”, springer, heidelberg. 88:161–179, 2013.

[HR17] H. Huo and M. Rupp. Unified representation for machine learning of molecules
and crystals. arXiv preprint arXiv:1704.06439, 2017.

[HSL18] B. Huang, N. O. Symonds, and O. A. v. Lilienfeld. Quantum machine learning
in chemistry and materials. Handbook of Materials Modeling: Methods: Theory
and Modeling, pages 1–27, 2018.

[HvL16] B. Huang and O. A. von Lilienfeld. Communication: Understanding molecular
representations in machine learning: The role of uniqueness and target similar-
ity. J. Chem. Phys., 145(16):161102, 2016.

[HvL17a] B. Huang and O. von Lilienfeld. The dna of chemistry: Scalable quantum
machine learning with amons. arXiv:1707.04146, 2017.

[HvL17b] B. Huang and O. A. von Lilienfeld. The DNA of chemistry: Scalable quantum
machine learning with amons. arXiv preprint arXiv:1707.04146, 2017. submit-
ted to Nature.

[HWCE06] J. Hafner, C. Wolverton, G. Ceder, and G. Editors. Toward computational
materials design: The impact of density functional theory on materials research.
MRS Bulletin, 31:659, 2006.

[JK17] J. P. Janet and H. J. Kulik. Predicting electronic structure properties of transi-
tion metal complexes with neural networks. Chemical Science, 8(7):5137–5152,
2017.

5.6 Appendix: Derivation of the combination technique for quantum machine learning 131

[Kar90] M. Karplus. Three-dimensional "pople diagram". Journal of Physical Chemistry,
94(14):5435–5436, 1990.

[Kar16a] A. Karton. A computational chemist’s guide to accurate thermochemistry for
organic molecules. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 6(3):292–310, 2016.

[Kar16b] A. Karton. A computational chemist’s guide to accurate thermochemistry for
organic molecules. Wiley Interdisciplinary Reviews: Computational Molecular
Science, 6(3):292–310, 2016.

[KCY`15] C. Kefalidis, L. Castro, A. Yahia, L. Perrin, and L. Maron. Computational
methods in lanthanide and actinide chemistry, ed. m. dolg, 2015.

[KE04] P. Kirkpatrick and C. Ellis. Chemical space. Nature, 432:823, 2004.

[KH15] W. Koch and M. C. Holthausen. A chemist’s guide to density functional theory.
John Wiley & Sons, 2015.

[KO00] M. C. Kennedy and A. O’Hagan. Predicting the output from a complex com-
puter code when fast approximations are available. Biometrika, 87(1):1–13,
2000.

[MFM`96] K. R. Müller, M. Finke, N. Murata, K. Schulten, and S. Amari. A numerical
study on learning curves in stochastic multilayer feedforward networks. Neural
Comp., 8:1085, 1996.

[MJFOP99] J. A. Montgomery Jr, M. J. Frisch, J. W. Ochterski, and G. A. Petersson. A
complete basis set model chemistry. vi. use of density functional geometries and
frequencies. J. Chem. Phys., 110(6):2822–2827, 1999.

[MJFOP00] J. A. Montgomery Jr, M. J. Frisch, J. W. Ochterski, and G. A. Petersson. A
complete basis set model chemistry. vii. use of the minimum population local-
ization method. J. Chem. Phys., 112(15):6532–6542, 2000.

[MO99] J. M. L. Martin and G. d. Oliveira. J. Chem. Phys., 111:1843, 1999.

[MOP] MOPAC2009, James J. P. Stewart, Stewart Computational Chemistry, Colorado
Springs, CO, USA, HTTP://OpenMOPAC.net (2008).

[MRG`13a] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen,
A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld. Machine learning of
molecular electronic properties in chemical compound space. New Journal of
Physics, 15(9):095003, 2013.

[MRG`13b] G. Montavon, M. Rupp, V. Gobre, A. Vazquez-Mayagoitia, K. Hansen,
A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld. Machine learning of
molecular electronic properties in chemical compound space. New Journal of
Physics, 15(9):095003, 2013.

132 5 Boosting quantum machine learning models with multi-level combination technique

[Mul17] A. Mullard. The drug-maker’s guide to the galaxy. Nature News, 549(7673):445,
2017.

[OPMJ96] J. W. Ochterski, G. A. Petersson, and J. A. Montgomery Jr. A complete basis
set model chemistry. v. extensions to six or more heavy atoms. J. Chem. Phys.,
104(7):2598–2619, 1996.

[Pfl97] C. Pflaum. Convergence of the combination technique for second-order elliptic
differential equations. SIAM Journal on Numerical Analysis, 34(6):2431–2455,
1997.

[PGL17] G. Pilania, J. E. Gubernatis, and T. Lookman. Multi-fidelity machine learning
models for accurate bandgap predictions of solids. Computational Materials
Science, 129:156–163, 2017.

[PKLAG15] E. O. Pyzer-Knapp, K. Li, and A. Aspuru-Guzik. Learning from the harvard
clean energy project: The use of neural networks to accelerate materials discov-
ery. Advanced Functional Materials, 25(41):6495–6502, 2015.

[Pop65] J. Pople. Two-dimensional chart of quantum chemistry. The Journal of Chemical
Physics, 43(10):S229–S230, 1965.

[Pop99] J. A. Pople. Nobel lecture: Quantum chemical models. Reviews of Modern
Physics, 71(5):1267, 1999.

[PWJ`13] G. Pilania, C. Wang, X. Jiang, S. Rajasekaran, and R. Ramprasad. Accelerating
materials property predictions using machine learning. Scientific reports, 3:2810,
2013.

[RDRvL14a] R. Ramakrishnan, P. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chem-
istry structures and properties of 134 kilo molecules. Scientific Data, 1:140022,
2014.

[RDRvL14b] R. Ramakrishnan, P. Dral, M. Rupp, and O. A. von Lilienfeld. Quantum chem-
istry structures and properties of 134 kilo molecules. Sci. Data, 1:140022, 2014.

[RDRvL15] R. Ramakrishnan, P. Dral, M. Rupp, and O. A. von Lilienfeld. Big Data meets
Quantum Chemistry Approximations: The ∆-Machine Learning Approach. J.
Chem. Theory Comput., 11:2087, 2015.

[Rei13] C. Reisinger. Analysis of linear difference schemes in the sparse grid combination
technique. IMA Journal of Numerical Analysis, 33(2):544–581, 2013.

[RG18] A. Rüttgers and M. Griebel. Multiscale simulation of polymeric fluids using
the sparse grid combination technique. Applied Mathematics and Computation,
319:425–443, 2018.

[RHTvL15] R. Ramakrishnan, M. Hartmann, E. Tapavicza, and O. A. von Lilienfeld. Elec-
tronic spectra from tddft and machine learning in chemical space. The Journal
of chemical physics, 143(8):084111, 2015.

5.6 Appendix: Derivation of the combination technique for quantum machine learning 133

[RRvL15a] M. Rupp, R. Ramakrishnan, and O. A. von Lilienfeld. Machine learning for
quantum mechanical properties of atoms in molecules. J. Phys. Chem. Lett.,
6:3309, 2015. http://arxiv/abs/1505.00350.

[RRvL15b] M. Rupp, R. Ramakrishnan, and O. A. von Lilienfeld. Machine learning for
quantum mechanical properties of atoms in molecules. The Journal of Physical
Chemistry Letters, 6(16):3309–3313, 2015.

[RTMvL12a] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld. Fast and
accurate modeling of molecular atomization energies with machine learning.
Phys. Rev. Lett., 108:058301, 2012.

[RTMvL12b] M. Rupp, A. Tkatchenko, K.-R. Müller, and O. A. von Lilienfeld. Fast and
accurate modeling of molecular atomization energies with machine learning.
Phys. Rev. Lett., 108(5):058301, Jan 2012.

[RvDBR12] L. Ruddigkeit, R. van Deursen, L. Blum, and J.-L. Reymond. Enumeration of
166 billion organic small molecules in the chemical universe database gdb-17.
J. Chem. Inf. Model., 52:2684, 2012.

[RvL17] R. Ramakrishnan and O. A. von Lilienfeld. Machine Learning, Quantum Chem-
istry, and Chemical Space, volume 30, pages 225–256. John Wiley & Sons, Inc.,
2017.

[RvLB18] M. Rupp, O. A. von Lilienfeld, and K. Burke. Guest editorial: Special
topic on data-enabled theoretical chemistry. The Journal of Chemical Physics,
148(24):241401, 2018.

[RW06] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learn-
ing, www.GaussianProcess.org. MIT Press, Cambridge, 2006. Editor: T.
Dietterich.

[SAC`17] K. T. Schütt, F. Arbabzadah, S. Chmiela, K. R. Müller, and A. Tkatchenko.
Quantum-chemical insights from deep tensor neural networks. Nat. Comm.,
8:13890, 2017.

[SC18] G. Schmitz and O. Christiansen. Gaussian process regression to accelerate geom-
etry optimizations relying on numerical differentiation. The Journal of Chemical
Physics, 148(24):241704, 2018.

[SIR17] J. S. Smith, O. Isayev, and A. E. Roitberg. Ani-1, a data set of 20 million
calculated off-equilibrium conformations for organic molecules. Scientific data,
4:170193, 2017.

[SNL`18] J. S. Smith, B. Nebgen, N. Lubbers, O. Isayev, and A. E. Roitberg. Less is
more: Sampling chemical space with active learning. The Journal of Chemical
Physics, 148(24):241733, 2018.

134 5 Boosting quantum machine learning models with multi-level combination technique

[SNZ`18] J. S. Smith, B. T. Nebgen, R. Zubatyuk, N. Lubbers, C. Devereux, K. Bar-
ros, S. Tretiak, O. Isayev, and A. Roitberg. Outsmarting Quantum Chemistry
Through Transfer Learning. 7 2018.

[SR18] G. N. Simm and M. Reiher. Error-controlled exploration of chemical reaction
networks with gaussian processes. arXiv preprint arXiv:1805.09886, 2018.

[SSK`18] K. T. Schütt, H. E. Sauceda, P.-J. Kindermans, A. Tkatchenko, and K.-R.
Müller. Schnet–a deep learning architecture for molecules and materials. The
Journal of Chemical Physics, 148(24):241722, 2018.

[SY18] L. Shen and W. Yang. Molecular dynamics simulations with quantum mechan-
ics/molecular mechanics and adaptive neural networks. Journal of chemical
theory and computation, 14(3):1442–1455, 2018.

[Vap13] V. Vapnik. The nature of statistical learning theory. Springer science & business
media, 2013.

[vL13] O. A. von Lilienfeld. First principles view on chemical compound space: Gaining
rigorous atomistic control of molecular properties. International Journal of
Quantum Chemistry, 113(12):1676–1689, 2013.

[vL14] O. A. von Lilienfeld. Towards the Computational Design of Compounds from
First Principles, volume IX of Mathematical Physics Studies. Springer, 2014.

[vL18] O. A. von Lilienfeld. Quantum machine learning in chemical com-
pound space. Angewandte Chemie International Edition, 2018.
http://dx.doi.org/10.1002/anie.201709686.

[WKK`15] H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, M. Schütz, P. Celani,
W. Györffy, D. Kats, T. Korona, R. Lindh, A. Mitrushenkov, G. Rauhut, K. R.
Shamasundar, T. B. Adler, R. D. Amos, A. Bernhardsson, A. Berning, D. L.
Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, E. Goll, C. Hampel, A. Hes-
selmann, G. Hetzer, T. Hrenar, G. Jansen, C. Köppl, Y. Liu, A. W. Lloyd, R. A.
Mata, A. J. May, S. J. McNicholas, W. Meyer, M. E. Mura, A. Nicklass, D. P.
O’Neill, P. Palmieri, D. Peng, K. Pflüger, R. Pitzer, M. Reiher, T. Shiozaki,
H. Stoll, A. J. Stone, R. Tarroni, T. Thorsteinsson, and M. Wang. Molpro,
version 2015.1, a package of ab initio programs, 2015.

[WMC18] M. J. Willatt, F. Musil, and M. Ceriotti. A data-driven construction of the
periodic table of the elements. arXiv preprint arXiv:1807.00236, 2018.

6 Algorithmic patterns for H matrices on
many-core processors

6.1 Introduction
In many fields of applications we are required to solve large dense systems of linear equations
of the form

Aφ,YˆYx “ b (6.1)

with

Aφ,YˆY “

¨

˚

˝

φpy1, y1q ¨ ¨ ¨ φpy1, yN q
...

φpyN , y1q ¨ ¨ ¨ φpyN , yN q

˛

‹

‚

, x, b P RN . (6.2)

where Y :“ ty1, . . . , yN u Ă Ω is a set of N points in a space Ω Ă Rd and φ : Ω ˆ Ω Ñ R is
a bivariate kernel function operating on that domain. In kernel-based interpolation [Wen04],
the linear system (6.1) arises in the computation of interpolation coefficients. In Gaussian
Process Regression (GPR) [RW05], kernel φ is a covariance function and Aφ,YˆY is replaced
by pAφ,YˆY ` σ2Iq with σ2 a (scalar) variance and I the unity matrix. The same modified
system also shows up in kernel ridge regression [Vov13]. Integral equations, discretized by
e.g. collocation, or discretizations by the boundary element method (BEM) lead to similar
linear systems.

The problem size N might get very large. As an example, N could be the number of training
samples in machine learning by kernel ridge regression or the number of degrees of freedom in
BEM. This can grow up to tens to hundreds of millions of samples or even more, depending on
the application. Here, linear solvers for (6.1) based on direct factorization get intractable due
to their OpN3q complexity. This is overcome by iterative solvers with fast approximate dense
matrix-vector product.

In this work, we address the topic of parallelizing the fast approximate dense matrix-vector
product based on hierarchical matrices (H matrices) [BGH03, Beb08, Hac15, Hac16] in context
of the model problem in (6.1–6.2).1 Using H matrix techniques, a matrix-vector product for
a fixed approximation accuracy is done in OpN log Nq operations, given φ is asymptotically
smooth, cf. Section 6.2. Similar to panel clustering [HN89] and multipole techniques [GR97],
the core idea is to distinguish between subsets Yi ˆ Yj Ă Y ˆ Y, where Yi and Yj are “close” to
each other or “far away”. In H matrices, a tree-based spatial decomposition of Y ˆ Y is done.

1In the following, we stick to model problem (6.1) with collocation matrices of type (6.2), where the evaluation
of each matrix entry is cheap. In contrast, the evaluation of system matrix entries in e.g. the discretization by
the BEM approach is much more expensive. That is, we here focus on the implementation and optimization of
the (many-core) parallel H matrix algorithms instead of the optimization of the performance of the evaluation
of the kernel matrix entries, which is a different objective, cf. [BC15].

135

136 6 Algorithmic patterns for H matrices on many-core processors

Nodes in that tree correspond to subsets of Yi ˆ Yj Ă Y ˆ Y and thus to sub-blocks of Aφ,YˆY .
Based on an admissibility condition, these sub-blocks are either identified as close and thus
directly evaluated or as far away and thus approximated. Approximation is done either using
expansions of the kernel function φ or using low-rank approximations of the algebraically given
matrix sub-block. In this work, low-rank approximations by adaptive cross approximation
(ACA) [BR03] are considered. This leads to a purely algebraic approach. A further refinement
of H matrix techniques are H2 matrices [HKS00, HB02, Bör04] that even exhibit OpNq time
complexity. Nevertheless, due to a higher algorithmic complexity, we for now stick to the
classical H matrix techniques.

H matrix techniques speed up the solution process of (6.1) significantly. Nevertheless, large
to huge problem sizes still cannot be tackled using a single processor core or just one workstation
with a limited amount of memory. Therefore parallelization of the H matrix method is cru-
cial. Parallelization of H matrix methods on standard processors (CPUs) is an active research
field. Research in this domain ranges from shared-memory to distributed-memory parallel H
matrix implementations on CPUs. The results of this research are a set of parallel H matrix
libraries, which include, but are not limited to H-Libpro [Kri17, BGH03, Kri05, GKLB08],
which is rather feature-complete with a shared-memory parallelization and limited distributed-
memory support, AHMED (Another software library on hierarchical matrices for elliptic dif-
ferential equations) [Beb], DMHM (Distributed-Memory Hierarchical Matrices) [Pou] with a
distributed-memory parallelization, H2Lib [B1̈7] with support for shared-memory parallelism
and work based on the related Hierarchically Semi-Separable (HSS) matrices [SDC07] with
the software STRUMPACK [RLGN16, GLR`16], where the latter one is parallelized for shared-
and distributed-memory. Another related, strongly CPU-parallel software for problems of type
(6.1), (6.2) is PetRBF [YBK10]. In contrast to the above works, we here address parallelization
on many-core processors.

Many-core processors such as graphics processing units (GPUs) or Intel Xeon Phi reflect
recent developments in chip production and high performance computing (HPC): Future par-
allel computers might show a dramatic growth in the number of parallel processing units with
a strong (negative) impact on scalability of current shared-memory and distributed-memory
parallelizations. Many-core processors are often assumed to be an optimal testbed for refor-
mulations of classical algorithms towards a massive amount of parallelism, preparing for future
parallel computers.

In this work, we will discuss fundamental research on new formulations of standard H matrix
algorithms in order to expose as much parallelism as possible to many-core hardware. Our new
algorithms are then implemented on a model hardware, namely GPUs (by NVIDIA). We claim
that all of our algorithmic developments equivalently apply to GPU hardware of other vendors
or to the Xeon Phi architecture. There is a small set of related work for H matrices on many-
core hardware. In [BC15], the GPU-acceleration of the quadrature in a H2 matrix method for
boundary element method problems is considered. Moreover, in [Kri13], many-core parallel
LU-factorization for H matrices is presented and evaluated on a Xeon Phi device. However,
these works have in common that many-core hardware is only used as an accelerator or for
another computing task, and not as main computing device for the fast matrix-vector product.
In contrast, we want to rely completely on many-core parallel hardware for the full H matrix
construction and matrix-vector product.

6.1 Introduction 137

Other works in the field of many-core hardware concentrating on matrices of type (6.2) or
using other methods are the ASKIT library [MXYB16], which uses GPU acceleration and some
very specific tree-based approximation technique and fast multipole methods [YB13, ABC`14]
with e.g. the multi-GPU parallel library ExaFMM [YB13]. While these approaches are very
promising for these specific matrices, our main intention is to parallelize the entirely algebraic
H matrix technique, allowing it to be used in much more applications.

Fully relying on many-core hardware specifically requires us to provide many-core parallel
reformulations of the underlying spatial data structure, the tree construction and traversal,
bounding box computations and the construction and evaluation of both the dense matrix
parts as well as the low-rank matrix approximations. We propose several algorithmic patterns
for many-core processors in context of H matrices. Space filling curves, i.e. Z order curves, are
discussed as parallelized spatial data structure. This goes back to work on the fast construction
and evaluation of bounding volume hierarchies on GPUs [LGS`09]. We use a parallel formu-
lation of tree traversal using an array-based tree description (cf. [MGG12] for a background
on GPU-based tree traversal). Batching or work aggregation, cf. e.g. [CKL, AHTD17] allows
to express parallelism even for code parts in which many similar non-equally sized subtasks
are done. This allows for strong optimizations of dense matrix operations, low-rank approx-
imations and bounding box calculations. Note that we also address the problem of limited
memory availability on many-core processors by (optionally) recomputing all data in the nu-
merical linear algebra part. That is, only meta data such as the block cluster tree has to be
stored permanently.

As a result of these developments, the author provides an Open Source reference implemen-
tation on GPU, which is called hmglib [Zas18]. To the best of the authors knowledge, this is
the first entirely GPU-based H matrix library of this kind. For completeness, we should state
that there is ongoing research on multi-GPU parallel hierarchical matrices in a library called
KSPARSE [BLL`], which is, however, not published and not available for download. Since very
recently, there exists a preprint [BTLK17] of the authors of [BLL`], discussing the parallel,
batched GPU-based implementation of matrix factorizations in context of hierarchical matri-
ces. However, it does not become clear, whether the full algorithm (beyond the batched linear
algebra) is performed on GPU. Moreover, the underlying code is not published. Therefore, we
still claim that the proposed work is the first available entirely GPU-based H matrix method.

From a technical point of view, we will show that our many-core parallel model implemen-
tation on one GPU outperforms a classical multi-core parallel CPU-based H matrix library
running on roughly equally priced hardware by a factor of 50 in the H matrix construction and
by a factor of four for the H matrix-vector product for a discussed model problem with cheap
kernel evaluations. Nevertheless, our main intention is to show the changes that are to be done
to get an entirely many-core parallel implementation. This shall lead to a better understanding
and preparation for future intrinsically extremely parallel computing hardware.

Section 6.2 introduces hierarchical matrices and adaptive cross approximation. Thereafter,
Section 6.3 discusses a simplified programming model for many-core processors. This model
allows to provide many-core parallel algorithms for H matrices in Section 6.4. Section 6.5 treats
the reference GPU implementation covering an in-depth benchmark and empirical performance
analysis including a comparison to a multi-core CPU code. Finally, Section 6.6 concludes this
work by a short summary.

138 6 Algorithmic patterns for H matrices on many-core processors

6.2 H matrix background
In the following, we will briefly summarize the necessary algorithmical and mathematical as-
pects of H matrices. This overview is partially based on [BGH03]. For further reading see
e.g. [Hac15].

Let us start by identifying the points in Y “ ty1, . . . , yN u by their index set I :“ t1, . . . , Nu.
A single entry φpyi, yjq of the system matrix Aφ,YˆY corresponds an index tuple pi, jq. Later,
we will build clusters τ , i.e. specific subsets τ Ă I. We can identify the product of two clusters,
e.g. τ ˆ σ Ă I ˆ I, with a sub-matrix Aφ,YˆY |τˆσ of the system matrix Aφ,YˆY . We will need
this dual view between sets of index tuples and matrix entries to better understand the basic
algorithmic idea of H matrices.

A kernel function φ : Ω ˆ Ω Ñ R is called asymptotically smooth if there are constants
Cas1, Cas2 P Rą0 such that

|Bα
x Bβ

y φpy, y1q| ď Cas1pCas2}y ´ y1}q´|α|´|β||φpy, y1q|

for all y, y1 P Ω with y ‰ y1 and all multi-indices α, β P Nd
0. Fixing y P Ω, the kernel evaluation

φpy, yfarq of an approximately smooth kernel function can be approximated with a controlled,
small error, in case the point yfar P Ω is far away from y. In the H matrix approach, an ad-
missibility condition identifies matrix blocks Aφ,YˆY |τˆσ that represent interactions of points
with indices τ that are far away from points with indices σ. Admissible matrix blocks are tra-
ditionally approximated via series expansions of the kernel φ. We here consider the well-known
alternative approach to approximate the matrix blocks by algebraic low-rank approximations
as e.g. in [BR03].

6.2.1 Clustering

The cluster tree TI “ pVI , γ, µq is a hierarchical spatial data structure on I (or Y). VI is
the set of nodes in the tree, γ a mapping γ : VI Ñ PpVIq of the nodes to their children and
µ : VI Ñ PpIq a mapping of the nodes to their value. Here, the value of each node is a cluster
in I, i.e. a subset of I. A cluster tree has to fulfill

(C1) µpvq P PpIqztHu, for all v P VI ,

(C2) µprootpT qq “ I,

(C3) if v P VI is a leaf, i.e. γpvq “ H, then |µpvq| ď Cleaf and

(C4) if v P VI is no leaf, then it has exactly two sons γpvq “ tv1, v2u and µpvq “ µpv1q Ÿ µpv2q.

Thereby, the cluster tree divides the full set I (C2) into a hierarchy of clusters, where non-
empty clusters of I (represented by nodes in TI , C1) are disjointly partitioned into two smaller
clusters (C4). In case a cluster is no longer partitioned (thus represented by a leaf), its size is
bounded from above by Cleaf (C3).

In cardinality-based clustering (CBC) [BGH03], an algorithm to create the cluster tree de-
composes the sets τ “ γpvq such that the subsets in the child nodes of v have similar size.
Moreover, the subsets shall build geometrically distinct clusters. A CBC based on space filling

6.2 H matrix background 139

Algorithm 8 Algorithm to build a block cluster tree
procedure build_block_cluster_tree(v1, v2, w, Cleaf)

pτ, σq Ð pµpv1q, µpv2qq

if τ ˆ σ is not admissible and |τ | ą Cleaf and |σ| ą Cleaf then
γpwq Ð H

for v1
1 P γpv1q do Ź Loop over all combinations of children in both cluster trees.

for v1
2 P γpv2q do

µpw1q Ð µpv1
1q ˆ µpv1

2q Ź Set block cluster of new node w1.
γpwq Ð γpwq Y tw1u Ź Add new node to children of w.
build_block_cluster_tree(v1

1, v1
2, w1, Cleaf)

else
γpwq Ð H Ź No child nodes are created, i.e. w becomes a leaf.

curves will be introduced in Section 6.4.1. The splitting in the cluster tree construction is
continued as long as |τ | ą Cleaf .

6.2.2 Bounding box admissibility

In this work, we will restrict ourselves to an admissibility condition based on bounding boxes
for clusters. Other choices are possible [Hac15]. For a cluster τ Ă I, the bounding box Qτ is
given as

Qτ :“
d
ź

i“1

”

apiq
τ , bpiq

τ

ı

with a
piq
τ :“ minjPτ y

piq
j , b

piq
τ :“ maxjPτ y

piq
j and yj :“

´

y
p1q

j , . . . , y
pdq

j

¯J

. One possible admissi-
bility condition for an index block τ ˆ σ Ă I ˆ I is

min tdiampQτ q, diampQσqu ď ηdistpQτ , Qσq (6.3)

with η P Rą0 a parameter balancing convergence and algorithmic complexity. Diameter
diampQτ q and distance distpQτ , Qσq of bounding boxes are defined by

diampQτ q :“
˜

d
ÿ

i“1
pbpiq

τ ´ apiq
τ q2

¸1{2

,

distpQτ , Qσq :“
˜

d
ÿ

i“1

ˆ

max
!

0, bpiq
σ ´ apiq

τ

)2
` max

!

0, bpiq
τ ´ apiq

σ

)2
˙

¸1{2

.

6.2.3 Block cluster tree

A hierarchy over blocks τ ˆσ Ă IˆI is induced by the block cluster tree TIˆI “ pVIˆI , γ, µq, with
γ the child node map and µ : VIˆI Ñ PpIˆIq the map of nodes to their values, i.e. blocks. Note
that we re-use here the same notation (γ, µ) as for the cluster tree. Algorithm 16 implicitly

140 6 Algorithmic patterns for H matrices on many-core processors

Algorithm 9 Adaptive cross approximation (ACA) for A P Rmˆn [BK09][BR03]
function compute_adaptive_cross_approximation(A, ε)

kmax Ð k
for r “ 1, 2, . . . , k do

ûr “ A1:m,jr ´
řr´1

l“1 ulpvlqjr , Ź Col. index jr depending on implementation
ur “ pûir q´1ûr, with |pûrqir | “ }ûr}8 Ź Row index ir given as pivot position
vr “ pAir,1:nq

J
´
řr´1

l“1 pulqir vl

if
´

}ur}2}vr}2 ď
εp1.0´ηq

1.0`ε }
řr

l“1 ulvl}F

¯

then Ź Stopping criterion
kmax Ð r Ź kmax is adaptively found rank
stop loop

U Ð pu1, . . . , ukmaxq

V Ð pv1, . . . , vkmaxq

return U , V

defines the block cluster tree. For given cluster tree nodes v1, v2 (corresponding to clusters
µpv1q “ τ, µpv2q “ σ), a block cluster tree node w with µpwq :“ µpv1q ˆ µpv2q (corresponding
to µpwq “ τ ˆσ) and parameter Cleaf , this algorithm recursively constructs a block cluster tree.
Procedure build_block_cluster_tree is initially launched with v1 and v2 each being a
root of the cluster tree TI and node w is initialized to represent the index block I ˆ I. By
construction, the leafs of TIˆI , namely LIˆI :“ tw P VIˆI | γpwq “ Hu, correspond to index
blocks that form a partition of I ˆ I.

6.2.4 Rk-matrices and adaptive cross approximation
If a node w in a block cluster tree corresponds to an index block τ ˆ σ Ă I ˆ I that is
admissible, the corresponding sub-matrix Aφ,YˆY |τˆσ P R|τ |ˆ|σ| is replaced by an Rk matrix
Rτˆσ P R|τ |ˆ|σ|. An Rk matrix Rτˆσ is given as

Rτˆσ “ UτˆσV J
τˆσ, Uτˆσ P R|τ |ˆk, Vτˆσ P R|σ|ˆk ,

that is, it has a maximum rank of k. Moreover, using Uτˆσ and Vτˆσ, a matrix-vector product
involving Rτˆσ can be computed in O pr ¨ p|τ | ` |σ|qq operations.

While there are many (problem-dependent) ways to approximate
Aφ,YˆY |τˆσ, we here aim at using a purely algebraic low-rank approximation method to de-
rive Rτˆσ. Our method of choice is the adaptive cross approximation (ACA) [BR03, BK09].
This method builds a low-rank approximation by an iterative rank-one update process that is
terminated based on the error ε in the Frobenius norm } ¨ }F .

One version of adaptive cross approximation is given in Algorithm 9. It follows the lines
of [BK09]. The algorithm computes for a general matrix A P Rmˆn and error threshold ε
matrices U P Rmˆkmax , V P Rnˆkmax such that A « UV J. If the algorithm terminates due
to the stopping criterion, kmax becomes the (adaptively computed) rank such that the error
}A ´ UV J}F is in the range of ε, while not being guaranteed to be strictly smaller than ε.
Otherwise, the maximum rank of kmax is hit. Unfortunately, the choice of a column pivot
index jr is strongly problem-dependent. For simplicity, in the search for a new pivot element,

6.2 H matrix background 141

Algorithm 10 Matrix-vector product with an H matrix L PIˆI

function matrix_vector_product(L, w, x, z)
if γpwq ‰ H then

for w1 P γpwq do
matrix_vector_product(L, w1, x, z)

else
τ ˆ σ Ð µpwq

if τ ˆ σ is admissible then
t Ð V J

τˆσ x|τ
z|τ Ð z|τ ` Uτˆσt

else
z|τ Ð z|τ ` L|τˆσ x|σ

return z

we iteratively increase jr until }ûr}2 ą ε0 for small ε0 in the range of machine precision.2
This corresponds to a choice made in [BR03, Section 3.1]. In our practical implementation,
we will, however, avoid to evaluate the stopping criterion and will only impose the maximum
rank kmax. As we will see in Section 6.5.4, kmax can be chosen rather small due to the
exponential convergence of ACA for appropriate kernel functions φ. For more details on ACA,
see [BK09, BR03].

6.2.5 H-matrices and their matrix-vector product

Formally, a general matrix L P R|I|ˆ|I| is — for fixed k P N and block cluster tree TIˆI — called
H matrix of block-wise rank k, if

rankpL|τˆσq ď k

for all index blocks τ ˆ σ in admissible leafs. The operation to transform an existing dense
matrix, e.g. Aφ,YˆY , to H matrix form is called truncation. It involves the introduction of a
cluster tree TI , a block cluster tree TIˆI and the computation of a low-rank approximation of
matrix blocks corresponding to admissible leafs.

The (fast) matrix-vector product of an H matrix L P R|I|ˆ|I| with a vector x P R|I|, that is,
the efficient evaluation of

z :“ z ` Lx ,

is summarized in Algorithm 10. The algorithm recursively traverses the block cluster tree for an
initially given (root) node w and applies a low-rank matrix-vector product for admissible blocks
and the full dense matrix for non-admissible blocks. If we launch matrix_vector_product
with w corresponding to I ˆ I and L being the truncated version of Aφ,YˆY , it can be shown
that the algorithm has a complexity of Opk ¨ N log Nq [Hac15].

2Note that this choice may not be stable. However, in our practical experiments with the discussed model
problems, we did not observe instabilities. Nevertheless, other applications might require a better, thus more
expensive, heuristics for the choice of jr.

142 6 Algorithmic patterns for H matrices on many-core processors

6.3 Programming model for many-core parallel algorithms

In this Section, we introduce the terminology to describe efficient and scalable parallel many-
core algorithms. Note that, to the best of the author’s knowledge, a common abstract pro-
gramming model for many-core architectures is still missing. Therefore, algorithmic work on
GPUs or Xeon Phi often addresses many details of these architectures. In contrast, we use
a strongly simplified programming model, avoiding most of the technical details of classical
many-core literature. Our model is based on two observations. First, a crucial part of a lot of
many-core parallel algorithms requires almost no interaction between the involved parallel com-
pute units, that is, they are close to embarrassingly parallel. Second, vendors (or enthusiasts)
provide extremely efficient many-core parallel implementations of base algorithms (reductions,
scan operations, etc.) for more complex parallel algorithmic patterns. Therefore, we claim
that we can build all algorithms of interest by combinations of almost embarrassingly parallel
kernels and standardized parallel algorithms. They are defined in more detail in the following
paragraphs.

6.3.1 Almost embarrassingly parallel kernels

The kind of compute kernels we discuss here are strongly related to the bulk synchronous parallel
model, cf. [Val90]: We introduce an (in principle) infinite number of virtual parallel threads. In
each parallel thread, the same piece of sequential code is executed. Different memory accesses
/ execution paths are realized by an index that is associated to each thread.

All threads are aggregated in a kernel, which gets the number of threads to execute at launch
time. The kernel terminates when all threads have stopped the execution of the sequential
code. The sequential code (per thread) can either use local memory, which can only be read
by that single thread, or global memory, which is available to all threads. At the end of the
kernel execution, all local memory data is lost while global memory entries remain available.
Whenever a single thread writes to a given global memory entry, read or write operations on
that memory entry (by another thread) are invalid / prohibited. Reading (without writing)
from a common global memory location by multiple threads in one kernel is possible.

One exception to the write rule is available in case of atomic operations (usually atomic_add
or atomic_compare_and_swap) on global memory. Atomic operations issued by different
threads on one common global memory location are all correctly executed, even if this means
that threads get serialized. However, the ordering of the execution is not assured. Therefore,
atomic operations are only useful in very few cases (e.g. counters).

Note that the actual mapping of threads to hardware processing units is not part of the
model. This especially allows to define parallel programs independent of the number of available
hardware threads. Moreover, the beforehand given definition of computing kernels does not
give any hints towards the performance of their actual mapping to a given hardware platform.
Let us give some examples. In case of GPUs, global memory accesses are fast if they are
done consecutively for consecutive thread indices, that is, threads 0,1,2,3,. . . access memory
entries e, e`1, e`2, e`3, In contrast, random access has rather low performance. Moreover,
conditionals in the thread-sequential code of a kernel might have a severe impact on performance
on GPUs if thread execution paths diverge within the vectorization on a multi-processor. On
the Xeon Phi, conditionals might even have a more dramatic impact if they evaluate differently

6.4 Many-core parallel algorithmic patterns for H matrices 143

Figure 6.1: Left: By sorting a set of arbitrary points following their Morton codes, a spatial
data structure is imposed. Right: By dividing the set of ordered points in to equally
sized subsets, we implicitly create clusters.

within the less flexible AVX512-based vectorizations.

6.3.2 Standardized parallel algorithms
As second ingredient to our many-core parallel algorithms, we expect to have access to a
parallel library of standardized (many-core parallel) algorithms similar to the C++ Standard
Template Library (STL) algorithms library. We e.g. need reduce, stable_sort, scan, ...
These algorithms are expected to be realized as one function call that is executed on data in
global memory. The many-core parallel implementation of these algorithms is assumed to be
extremely optimized and given e.g. by the vendor. On GPUs an implementation of STL-like
algorithms is available via the Thrust library [BH11]. Alternatives include, but are not limited
to ArrayFire [YAM`15] (supporting GPUs, CPUs and Xeon Phi) and Boost.Compute [Szu16]
(supporting multi-core CPUs and GPUs). In addition, we assume to have appropriate BLAS
libraries for a given many-core device.

6.4 Many-core parallel algorithmic patterns for H matrices
In the following, we introduce parallel patterns and algorithms for the many-core parallel
construction of H matrices and the many-core parallel H matrix-vector product.

6.4.1 Spatial data structures and clustering based on Z-order curves
We use a Z order space filling curve [Mor66] to introduce a spatial data structure on top of
the input point set Y. This idea is based on [LGS`09]. We assign each point in Y a Morton
code, which is an integer value. By ordering the elements of Y following their Morton codes,
two consecutively ordered points get spatially close to each other, cf. Fig. 6.1 on the left-hand
side. In the following, we will always assume that the input point set Y is stored following
the Morton order. The implicit spatial structure introduced by the Morton ordering strongly
simplifies the construction of the cluster tree: Whenever we have to split up a given cluster into
two spatially distinct clusters in cardinality-based clustering, we only have to divide a given
ordered point array into two parts, i.e. the first half of the elements builds the first cluster

144 6 Algorithmic patterns for H matrices on many-core processors

Algorithm 11 Computation of Morton codes
procedure compute_morton_codes<|Y|>(coords)

for each thread t “ 0, . . . , |Y| ´ 1 in parallel do
current_code Ð 0
for i “ 1, . . . , d do

code_current_dim Ð compute_fixed_point_representation(coords[i][t])
code_current_dim Ð stretch_bits(code_current_dim, i, d)
current_code Ð interleave(code_current_dim,current_code, i)

morton_codes[t] Ð current_code
return morton_codes

and the second half of the elements builds the second cluster, cf. Fig. 6.1 on the right-hand
side. That is, spatial operations get reduced to array operations. To guarantee this ordering
in the whole algorithm, we construct the Morton code and the reordering once and permute
the vector x in the H matrix-vector product appropriately.

Note that the construction of point clusters based on Z-order curves might not result in clus-
ters with the exact same numerical quality as in the case of the construction based on e.g. k-d
trees. That is, a lowered quality of the clusters might have an impact of the required compu-
tational work of the method. However, as we will show, this cluster construction methodology
leads to a very fast and very parallel procedure giving high performance to the method. A
theoretical and empirical analysis of the impact of the use of space filling curves for clustering
is considered future work.

On many-core hardware, we follow the lines of [LGS`09] and compute the Morton codes for
a point set in a trivially parallel way.3 Algorithm 11 summarizes the corresponding parallel
kernel compute_morton_codes. Per parallel thread / point coordinate, it iterates over the
dimensions of the point coordinates, where it transforms the floating-point representation of the
coordinate entry to a fixed-point representation. Next, the bits of the fixed-point representation
are stretched. Finally, the stretched bits are interleaved dimension-wise such that the final
Morton code is constructed. Sorting the points following their Morton codes is an operation of
log-linear complexity for which we assume to have an STL-like operation, cf. Section 6.3.2.

From a data structure point of view, we collect the points Y in instances of a struct
point_set. The struct contains a multi-dimensional array coords of point coordinates in
Morton order, the dimension of the points and the number of points |Y|. As described in
Section 6.2, the H matrix method strongly relies on sub-blocks Aφ,YˆY |τˆσ of matrix Aφ,YˆY ,
which are constructed over index blocks τ ˆσ Ă I ˆI. As we will see, clusters τ Ă I will always
correspond to points that are (by Morton ordering) consecutively stored in coords. Therefore,
we can define a cluster τ by index ranges til,¨, il,¨ ` 1, il,¨ ` 2, . . . , iu,¨u pointing to the storage
location in coords. That is, each cluster τ is represented just by the lower and upper index
bounds il,¨ and iu,¨. Moreover, we collect the nodes w P VIˆI of the block cluster tree TIˆI in
instances of structs work_item. In addition to the lower and upper index bounds for clusters τ
and σ, this struct defines storage for bounding boxes of the clusters τ , σ and an admissibility

3We here assume that the reader has some knowledge about the construction of Morton codes. For details, see
e.g. [BET99].

6.4 Many-core parallel algorithmic patterns for H matrices 145

Figure 6.2: The many-core parallel block cluster tree traversal parallelizes over the nodes on a
given level of the tree. The parallel algorithm is here exemplified for the strongly
simplified situation of a tree with nodes containing numbers (instead of products
of clusters).

flag.

6.4.2 Block cluster tree traversal

In the following, we introduce a fully parallel tree construction and traversal algorithm for the
block cluster tree TIˆI . The algorithm is related to ideas in [LGS`09, MGG12] and on-the-fly
builds and traverses a block cluster tree. An input tree TIˆI “ pVIˆI , γ, µq is assumed to have
height hpTIˆIq, levels l P t0, . . . , hpTIˆIqu and block clusters or nodes w P VIˆI . The algorithm
is designed such that we only store nodes VIˆIplq :“ tw P VIˆI | levelpwq “ lu and VIˆIpl ` 1q

for two consecutive levels l and l ` 1. All other data is created level-wise and discarded after a
new level has been successfully created. The nodes w P VIˆIplq and w1 P VIˆIpl ` 1q are stored
in global arrays node_data_old and node_data. In the construction of level l ` 1, we further
need the number of children per node w P VIˆIplq, i.e. |γpv1q|, stored in child_count and the
offset of the data of the child nodes (child_offset). Figure 6.2 illustrates these arrays.

Our approach, as given in Algorithm 12, works as follows: Let us assume for now that the
arrays per level can have arbitrary size and that we are on level 0 ď l ă hpTIˆIq and the only
available data is the node data VIˆIplq, stored in node_data_old. We first compute bounding
box information for each node / block cluster in VIˆIplq. This is done using some lookup table

146 6 Algorithmic patterns for H matrices on many-core processors

Algorithm 12 Many-core parallel block cluster tree traversal
procedure traverse(root) Ź Traverse a block cluster tree with given root data

allocate node_data, node_data_old, child_count, child_offset
node_data[0] Ð root_data
node_data_old Ð node_data
l Ð 0
|VIˆIplq| Ð 1
while |VIˆIplq| ą 0 do Ź Handle block cluster tree levels as long a there are nodes

(compute bounding box information bnd_info, see Section 6.7)
compute_child_count<|VIˆIplq|>(child_count, node_data_old, bnd_info)

Ź Kernel to compute the number of children per node
exclusive_scan(child_offset, child_count, 0, |VIˆIplq|)
|VIˆIpl ` 1q| Ð child_offset[|VIˆIplq|] Ź Set total number of children
compute_children<|VIˆIplq|>(node_data, node_data_old, child_count, child_offset)

Ź Kernel to compute the content of the children
node_data_old Ð node_data
l Ð l ` 1

mechanism and a technique called batching that we outline in greater detail in Section 6.4.3.
Details on the bounding box calculation are given in Section 6.7. Then, we invoke a kernel com-
pute_child_count with the number of threads equal to the number |VIˆIplq| of nodes on
that level. In the kernel, we independently evaluate for each node w P VIˆIplq (being an instance
of a struct work_item, cf. Section 6.4.1) the admissibility condition (6.3) using the precomputed
bounding boxes. Depending on the result, the number of children |γpwq| P t0, 4u on the next
level is written into child_count at the same offset in the array as the given node data. In a
next step, we have to compute the offsets for the node data on the next level, i.e. child_offset.
This can be done by an exclusive_scan operation initialized to 0, cf. Fig. 6.2. The entries of
child_offset then become [0, child_count[0], child_count[0]+child_count[1],...].
The output of the scan operation contains as additional number (at the end of the set of valid
entries) the total number of children |VIˆIpl ` 1q|.

The last step on level l is the creation of the node data VIˆIpl ` 1q on level l ` 1. This is
again done using a kernel with the number of threads equal to |VIˆIplq|. Each thread then
independently computes the new entries taking the storage location in node_data for level
l ` 1 from child_offset. In particular a thread either creates new children by splitting up
the index set by CBC clustering based on the Morton order or, if a node turns out to be a leaf
node, puts the node as admissible or non-admissible leaf node to a write-only parallel output
queue work_queue of work_item structs.

The parallel output queue is a global memory array of appropriate size. Additionally, we
store a pointer to the head and the tail of the queue in global memory. We fill this queue
in parallel, i.e. it grows during the block cluster tree traversal. Whenever a put operation is
issued in a thread of a kernel, the head pointer is moved accordingly by an atomic operation
while storing the old head in the same operation. The old head is used as output address to
write the data in the queue. Figure 6.3 summarizes and exemplifies the approach. Removal of
data or reading the head of the queue during the enqueueing process is not required. The actual

6.4 Many-core parallel algorithmic patterns for H matrices 147

Figure 6.3: By the use of atomic operations it is easily possible to create a write-only parallel
output queue. In the above example, two threads concurrently add four entries to
the head of the queue.

execution of the tasks, stored in the output queue, is done later in the H matrix construction
and is an operation on a fixed-size array.

This finishes the computation for one level. The whole process is iteratively proceeded over
all levels 0 ď l ă hpTIˆIq. To start the tree traversal on level zero, i.e. the root of the tree, the
node_data array is initialized with a single entry containing the set I ˆ I.

We next have to discuss how to deal with the array allocation in presence of changing level
sizes. The first option would be to pre-allocate the arrays to a fixed size
maxlPt0,...,hpTIˆI qu |VIˆIplq|. This requires to know this number beforehand or to have a suitable
upper bound for it. Very often, this is not the case. The second option is a dynamic allocation
of the array size for the next level. This size can be predicted based on the information in
the child_count array. In case a re-allocation of memory is a very expensive operation on a
given target architecture, one could also apply hybrid approaches such as adapting the size of
the arrays only if a given array (of large size) would be too small for the next level. In our
implementation on GPU, a global re-allocation of the memory is a very efficient operation.
This is why we have chosen to use the dynamic allocation approach.

Let us now discuss the utilization of the many-core processor for our algorithm. It becomes
obvious that the number of used parallel threads on the first few levels is very low. Here, we
make no full use of the many-core processor. This might become an issue, if many tree traversals
on small trees are considered and if the tree traversal operation itself is the dominant operation
in an application. However, both is not the case in our application: The block cluster tree is
very large and, as we will see in Section 6.5, the tree traversal operation makes only a very
small fraction of the overall H matrix setup / application process. Therefore, we consider
our tree traversal method efficient enough for our needs. In case higher utilization of the
many-core processor is needed, efficient solutions become very architecture-specific. In case of

148 6 Algorithmic patterns for H matrices on many-core processors

Figure 6.4: Left: The work queue generated during the block cluster tree traversal only contains
meta information. No matrix element has been evaluated, yet. Right: The work
queue is split up into admissible and non-admissible work elements (ACA vs. dense),
before it is used as ordering for the batched linear algebra operations.

GPUs, there is work on tree traversal by work queues [GPM11], which, however, makes explicit
use of knowledge on the hardware and somehow even breaks the programming model initially
considered for (NVIDIA) GPUs.

6.4.3 Numerical linear algebra

During the block cluster tree traversal, an array work_queue of work_item structs is con-
structed (via the parallel output queue), cf. Fig. 6.4. It contains the matrix sub-block informa-
tion of blocks that are either approximated by ACA or directly constructed as dense matrices,
i.e. admissible or non-admissible leafs. Note that we did not evaluate a single matrix entry up to
this point. So we only work on meta data. We initially decompose the work_queue into two ac-
cording sub-arrays aca_work_queue and dense_work_queue, cf. Fig. 6.4. For the sub-matrices
represented by the entries of these arrays, we either apply adaptive cross approximation or
dense matrix-vector operations.

In classical (sequential) H matrix implementations, both, the factors U and V of the adaptive
cross approximation and the dense matrix blocks are precomputed during an initialization phase
and then stored in memory. This is due to the fact that often, e.g. in boundary element methods,
the evaluation of a single matrix entry is already considered very expensive, a storage operation
in memory is relatively cheap and large amounts of (CPU) memory are available. Using many-
core processors, this balance is somewhat different. Here, evaluating matrix elements is often
much faster. However storing data in global memory, i.e. not keeping it in the local memory
of the kernel, is rather expensive. Moreover, the memory of many-core processors is often very
limited. Therefore, we adapt the classical strategy to the abilities of many-core processors
in the following way: We normally always re-compute all low-rank approximations and re-
assemble dense matrices during each application of the fast matrix-vector product. Thereby
we do not run into the very strong memory limitations of many-core processors. However, we
also add the option to pre-compute the construction of the factors U and V in the adaptive
cross approximation once, while using these factors during many matrix-vector products. Note
however that this is very memory-consuming. A pre-computation of the dense sub-blocks is
never done.

In the following, we first introduce the general concept of batching many small similar non-

6.4 Many-core parallel algorithmic patterns for H matrices 149

Figure 6.5: By batching individual subproblems into one big array, it becomes possible to utilize
a many-core processor much better.

Figure 6.6: Reduction operations (here maximum computations) for several sub-problems can
be handled in parallel by a reduce_by_key operation, where identical consecu-
tive entries in batch_keys mark the individual batches.

equally sized compute tasks. This concept is then heavily used in the computation and appli-
cation of the adaptive cross approximation and the dense matrix-vector products.

Batching many similar non-equally sized compute tasks

In the numerical linear algebra operations showing up in H matrix calculations, there is often
an identical computing task which shall be applied to m different, non-equally sized arrays
b0, b1, . . . , bm´1 of sizes nb0 , nb1 , . . . , nbm´1 . Figure 6.5 gives an example of such arrays. The
easiest way to consider a parallelization on many-core hardware would be to loop over all
arrays bi and to perform the necessary many-core parallel operations independently to each
array. This is efficient as long as the many-core processor is sufficiently utilized. However,
we here consider arrays of changing and, usually, small size. In this case, a major part of the
many-core processor is not used. Therefore we propose to use the technique of batching of the
necessary computations, cf. [CKL, AHTD17], in order to use the full processor while speeding
up the calculation.

The first step in batching is to put all sub-arrays or batches bi consecutively in a batched
array of size nb :“

ř

i nbi
, cf. Fig. 6.5. We next have to distinguish between transformation

operations and reduction operations on that batched array. A transformation on each batch
applies changes individually to each entry of each batch, i.e. there is no interaction between
the data entries. Applying a transformation to each batch is therefore equivalent to applying
the same transform to the full batched array. Therefore, in case of transformations, we apply
one operation to the full batched array.

In contrast, reduction operations (such as sum, minimum, maximum, norm, etc.) require

150 6 Algorithmic patterns for H matrices on many-core processors

Figure 6.7: The construction of an array of keys for batching involves marking boundaries of
the batches and an exclusive_scan operation.

Algorithm 13 Many-core parallel key generation for batching
procedure create_keys(batch_bounds, keys, nb, m)

init<nb>(batch_keys, 0)
set_batch_bounds_in_keys<m>(batch_keys, batch_bounds, keys)
exclusive_scan(batch_keys, batch_keys, 0, nb)
correct_upper_bounds_in_keys<m>(batch_keys, batch_bounds, keys)
return batch_keys

the interaction of all entries within a batch. Therefore, we need a different strategy. The
STL-type algorithm reduce_by_key is applied to the full batched array and computes, in
parallel, batch-wise reductions. The action of the method is shown in Fig. 6.6 for a maximum
reduction operation. We introduce a batch_keys array of integer values. A consecutive series
of identical numbers in the batch_keys array marks one batch. The method reduce_by_key
then applies the reduction operation per batch and builds up a small array of size m containing
the reduction results and the keys reduced to a single number.

To compute the batch_keys array, we need an additional parallel algorithm, cf. Algorithm 13.
It takes an array of boundaries (batch_bounds) of each batch bi and an array (keys) of keys
kbi

per batch as input. The procedure to create keys for batching is exemplified in Fig. 6.7.
We initialize (by a kernel of nb threads) the batch_keys array to zeros. Then, the kernel
set_batch_bounds_in_keys of m threads is invoked, where each thread independently
writes the key kbi

and the negative key ´kbi
to the lower and upper bound of each batch in the

batched array, cf. Fig. 6.7. Then an exclusive_scan operation (adding elements) is executed
on the full batched array. This sets the correct keys almost everywhere, except for the upper

6.4 Many-core parallel algorithmic patterns for H matrices 151

Figure 6.8: In the batched version of the adaptive cross approximation, the columns of the
low-rank factors Ul and Vl are stored consecutively in memory. The brown ar-
rows indicate the order in memory while the black arrows indicate threads in the
parallelization.

boundary of each batch. Therefore a second kernel of m threads is invoked to correct the upper
bounds of each batch bi to kbi

.
In some cases, the size nb of the batched array is too large to be kept in the memory of the

many-core processor. Such cases can be handled by appropriately partitioning the batches bi

into subsets of batches, which are then handled as before.
A crucial property of the approach presented here is its independence of the size and the

number of batches. This is a strong advantage over strategies that directly rely on the use
of the different parallelization hierarchies (thread blocks, grids on GPUs and vectorization,
shared-memory parallelism, etc. on Xeon Phi).

Batched adaptive cross approximation

We apply batching to compute and apply adaptive cross approximations for all ACA elements in
the aca_work_queue. The storage pattern is to consecutively store elements u

p0q

l , u
p1q

l , . . . u
pm´1q

l

in memory, where a single ACA sub-matrix U piq is given as U piq “ pu
piq
1 u

piq
2 . . . u

piq
k q. The top

index is the batch number and l is the index of the rank-one information. The blocks of batched
rank-one information is then stored consecutively for l “ 0, . . . , k ´ 1, where k is the maximum

152 6 Algorithmic patterns for H matrices on many-core processors

number of ranks that is initially given as user argument. Figure 6.8 shows this storage principle.
In the batched ACA computation, we first set up several meta data arrays describing mainly

mappings between the batched ACA data, indices of the input point set and the work items in
the aca_work_queue. These mappings are used to have constant-time access in kernels being
parallelized over the points, over the aca_work_queue entries or over the batched ACA data.
We can compute these maps similar to the approach presented e.g. in Algorithm 13. Then,
we execute the classical ACA algorithm in a batched version. That is, simple transformations
can be applied directly to the full batched array while batch-wise reductions are handled as
described before.

Note that the ACA algorithm has an data-dependent iterative behavior, e.g. in case of
pivoting. That is, the algorithm might need different numbers of iterations for different batches.
We cope with this by introducing a voting mechanism that stops the iterative process when
work is finished on all batches. A drawback of this approach is that the runtime for the batched
version is bound from above by the slowest batch. However, from our practical tests, this has
never been a performance issue.

Depending on the choice of pre-computing or directly applying the low-rank factors U and
V , we either keep these factors in global memory for later use or we directly apply them using
BLAS library calls for dense matrix-vector products.

If we choose to recompute the ACA during each matrix-vector product, we further have the
opportunity to split up the whole batched ACA computation to several smaller batched ACA
operations. This allows to handle much larger matrices, which would otherwise not fit into
GPU memory. To make this possible, we have to choose the number m of matrix batches per
batched matrix. We have designed a heuristics that fills up a batched matrix with matrices of
size nbi

ˆ k as long as
ř

i nbi
is smaller than a threshold bsACA, i.e. the batching size for ACA.

As we will see in Section 6.5.6, the choice of this batching size parameter is important for the
performance of the code.

Batched dense sub-matrix application

The application of the dense sub-matrix matrix-vector products is also done in a batched,
parallel way. Analogously to the batched ACA computation, we first assemble, entirely in
parallel, a larger number of dense sub-blocks using an appropriate compute kernel. The storage
principle is similar to the one presented in the previous paragraph, i.e. we stack the dense
matrices of size nbi

ˆ n1
bi

on top of each other. To get a simpler representation in memory, we
pad all batched sub-blocks by zero columns such that they have all the same column count
maxi n1

bi
. Afterwards, we use a batched version of BLAS for the dense matrix-vector products.

As in the case of batched ACA computation, we have designed a heuristics to create batches
of fixed maximum size. In case of the batched dense matrix-vector products, we choose to keep
the total batch storage size smaller than a threshold bsdense,

max
i

n1
bi

¨
ÿ

i

nbi
ď bsdense .

6.5 Results 153

6.5 Results

In this section, we evaluate the performance of the above described many-core parallel algo-
rithms in the concrete GPU implementation hmglib [Zas18] developed by the author. The
library is available via GitHub and is licensed under LGPL License Version 3.0. This imple-
mentation only covers the H matrix construction or setup and H matrix vector product for
a matrix Aφ,Y1ˆY2 for a given kernel function φ and sets Y1 and Y2. It is not intended to
be feature-complete, i.e. providing the full H matrix algebra. Instead, it is a test bed for the
above discussed many-core parallel algorithms. Nevertheless, it is possible to solve linear sys-
tems of type (6.1) by using the iterative dense linear solvers library MPLA [Zas17] developed by
the author (Open Source, available on GitHub), which has an interface to hmglib. However,
the objective of this benchmark chapter is to stick to the discussion of the construction and
the H matrix-vector products, avoiding to confuse the reader with solver details and with two
different library implementations.

In the following, we start our discussion by giving brief details on the library hmglib with
the targeted hardware and applied external many-core parallel libraries. Afterwards, we intro-
duce a model problem and show empirically that the implemented approximate matrix-vector
product converges dimension-dependent almost exponentially in the rank k used in the adap-
tive cross approximation for the given model problem. Since the main goal is, to get a code
of optimal complexity, we check the runtime complexity of hmglib by numerical experiments.
Thereafter, we give details about the performance improvements made by batching. As we
will see, these performance improvements have the highest impact on our final results. We
finish this section by comparing the runtimes of hmglib against a reference CPU implementa-
tion. Note here, that we will compare a multi-core multi-purpose state-of-the-art, Open Source
library for hierarchical matrices (H2Lib [B1̈7]) with a very specific, parallel many-core imple-
mentation on roughly equally priced hardware. Comparisons like this can never be completely
fair. Therefore, the results of this study are only treated as a rough hint towards the actual
performance improvement by using hmglib.

6.5.1 GPU implementation hmglib

The library hmglib [Zas18] is implemented for graphics processing units of
NVIDIA Corporation. Our notion of a compute kernel from Section 6.3.1 can be easily mapped
to the compute kernels in the C language extension CUDA for programming NVIDIA GPUs.
Note however, that an implementation in OpenCL (for NVIDIA and AMD GPUs) or OpenMP
with extensions for Intel Xeon Phi devices should be equally possible. Within our hand-
implemented CUDA compute kernels, we always use a so-called block size of 512, i.e. 512
threads are bundled in a block with common shared memory (which we actually do not explic-
itly use). hmglib uses the CUDA Toolkit 8.0. It is compiled with optimization parameter -O3.
The CPU code compiler will be discussed later.

Within our many-core parallel algorithms in Section 6.4, we launch, beside of compute ker-
nels, library calls for general many-core parallel STL-type algorithms. In hmglib, the library
Thrust, which is delivered as part of the CUDA Toolkit, provides these STL-type algorithms.
Thrust contains all the necessary parallel algorithms and delivers decent performance for GPUs.
Moreover, we use BLAS-type operations of the library CUBLAS, which is also delivered as part of

154 6 Algorithmic patterns for H matrices on many-core processors

the CUDA Toolkit. In case of the batched application of dense matrix-vector products, we apply
the state-of-the-art GPU Lapack library Magma 2.2.0. There, we specifically use the batched
multiplication
magmablas_dgemv_vbatched.

hmglib allows to select, whether batching is applied in the matrix-vector product, or not.
Moreover, it is possible to switch on the pre-computation of the low-rank factors in the adaptive
cross approximation. This requires a lot of GPU memory. However, H matrix-vector products
can be applied faster if the low-rank factors do not have to be recomputed for each multipli-
cation. Remember that in CPU-based H matrix implementations, the dense sub-blocks of the
approximated matrix are often pre-computed, too. This is not done here, due to limited GPU
memory and very fast matrix assembly on GPU. All calculations are done in double precision.

6.5.2 Hardware setup and time measurements

While a major part of the development work has been carried out on the cluster Titan at Oak
Ridge National Lab, the benchmarking was done on the PSG Cluster of NVIDIA Corporation.
On the latter one, IBM S822LC compute nodes with IBM POWER8 architecture were used.
They are each equipped with two 10-core IBM POWER8 processors at 2.86 GHz leading to
a total of 160 logical cores on a Linux system, 512 GB RAM and four NVIDIA Tesla P100
SXM2. Only one out of these four GPUs was used. Our CPU performance comparison is done
on the same platform. Additionally, we give timings for an Intel compute server equipped with
two 20-core Intel Xeon E5-2698 v4 CPUs with 2.20 GHz and 768 GB RAM. Hyper-threading
is switched on on the Intel machine leading to 80 logical cores. Note that the price for the two
Intel CPUs seems4 to be in the same range as the price of a single Tesla P100 SXM2.

Whenever we use GPU-based calculations, we use CUDA Events to get very accurate time
measurements. The time required by potentially necessary data transfers between GPU and
CPU is always included. However, we assume the initial data, i.e. the point set Y to reside in
GPU memory. In case of CPU-based H matrix benchmarks, we use the gettimeofday command
to do the measurements. All measurements (GPU and CPU) are averaged results over five
trials of a H matrix construction or a H matrix-vector product with different random vectors
x.

6.5.3 Model problem

All benchmarks consider matrix-vector products of the form

Aφ,YˆYx

with

Aφ,YˆY “

¨

˚

˝

φpy1, y1q ¨ ¨ ¨ φpy1, yN q
...

φpyN , y1q ¨ ¨ ¨ φpyN , yN q

˛

‹

‚

, x P RN .

4An exact pricing for the Tesla P100 SXM2 was, at time of writing this article, hard to find, since it is no
discrete graphics card. The discrete Tesla P100 version with 16 GB has an identical pricing as the two Intel
CPUs.

6.5 Results 155

where Y :“ ty1, . . . , yN u Ă Ω is a set of N points in a space Ω Ă Rd and φ : Ω ˆ Ω Ñ R is
a bivariate kernel function operating on that domain. We specifically choose Ω “ r0, 1sd with
d “ 2, 3. Moreover, the point set is a Halton sequence, i.e. a quasi Monte-Carlo sequence,
of length N in d dimensions. This choice corresponds to the typical setup in kernel-based
approximation on the unit square / cube. We test the implementation with different (unscaled)
kernel functions, namely the Gaussian kernel

φGpy, y1q “ e´}y´y1}2

and a Matérn kernel [Fas07, Section 4.4]

φM py, y1q “
Kβ´ d

2
p}y ´ y1}q}y ´ y1}β´ d

2

2β´1Γpβq
,

where Kν is the modified Bessel function of second kind of order ν and Γ is the gamma function.
We choose β´ d

2 “ 1. The resulting matrix AφM ,YˆY shows up in first-order convergent function
interpolation schemes in kernel-based interpolation [Fas07, Theorem 14.5, Example 15.4] for
appropriately smooth functions. The norm } ¨ } is the usual Euclidean norm of appropriate
dimensionality.

This model problem represents the application fields of mesh-free kernel-based approxima-
tion, (non-regularized) kernel ridge regression and, in some cases, Gaussian process regression.

6.5.4 Convergence of the matrix-vector product approximation

We start our experiments by checking the convergence of our H matrix implementation for
growing ACA rank k for all discussed kernel functions in two and three dimensions and problem
size N “ 32768. Furthermore, we choose Cleaf “ 256 and η “ 1.5. All other parameters are
not relevant for this convergence study. As for the performance measurements, we perform five
runs and average over each result. The error in each run is the relative error

erel “
}HpAφ,YˆYqxrand ´ Aφ,YˆYxrand}2

}Aφ,YˆYxrand}2

for a random input vector xrand. HpAφ,YˆYq is the H matrix approximation of the full system
matrix Aφ,YˆY . Note that we are strongly limited in the problem size N since we do all
computations on GPU and therefore have to do the full matrix vector product Aφ,YˆYxrand in
GPU memory.

Fig. 6.9 shows on the left-hand side the convergence results for d “ 2 and the two different
kernels from the model problem. For the Gaussian kernel, it is known that the error decays
as exp

´

´α d
?

k
¯

. Our implementation delivers this dimension-dependent almost exponential
convergence in the number of ranks k used in the adaptive cross approximation. The same test
is repeated for dimension d “ 3 with similar results. Since the results for Gaussian and Matérn
kernel are almost identical, we will restrict ourselves to performance studies for the Gaussian
kernel.5

5Note that we stick to low dimensions d since it is well-known that these can be handled well by H matrices.

156 6 Algorithmic patterns for H matrices on many-core processors

Figure 6.9: For fixed problem size N “ 32768 and growing number of ranks in the adaptive cross
approximation, the H matrix-vector product converges to the full matrix-vector
product with the expected dimension-dependent almost exponential convergence
for dimensions d “ 2 (left) and d “ 3 (right).

6.5.5 Runtime complexity and performance of the GPU-parallel code

The crucial objective of an implementation of the hierarchical matrix method is to achieve
the optimal runtime complexity of OpN log Nq for the matrix-vector product at fixed rank k.
However, very often, high (pre-asymptotic) runtime performance on many-core hardware is only
achieved by sticking to algorithmic simplifications of worse complexity but higher performance.
The following empirical study shall show that the H matrix implementation in hmglib, which
is based on our many-core parallel H matrix algorithms from Section 6.4, actually achieves
the required OpN log Nq runtime complexity. To study this, we choose η “ 1.5, Cleaf “ 2048,
k “ 16, bsdense “ 227 and bsACA “ 225, use batching and carry out performance measurements
for growing problem size N .

We first discuss the runtime complexity of the setup of the spatial data structure. While
computing the Morton codes for all points yi is of complexity OpNq, sorting the points following
the Z order curve is a OpN log Nq operation. This is reflected by our empirical study shown
on the left-hand side of Fig. 6.10. For d “ 2 and d “ 3 we observe a runtime complexity
of (below) OpN log Nq after some pre-asymptotic range. The same behavior is observed for
the construction and the traversal of the block cluster tree. Runtime results for this case are
given on the right-hand side of Fig. 6.10. Note again that it is non-trivial to get the optimal
complexity for such a complex many-core parallel code. Figure 6.10 further outlines that the
spatial data structure setup and the tree traversal is actually very fast. Even for N “ 226, i.e.
an approximation of a dense matrix of roughly 67 ˆ 67 million entries, we only need about 0.4
seconds for the spatial data structure and about 3 seconds for the tree traversal (for d “ 3).

The second part of this runtime complexity study covers the application of the fast matrix-

The application of H matrices in high dimensions is ongoing research.

6.5 Results 157

Figure 6.10: Even for the largest problem size of 226 « 67 million unknowns, the time for the
spatial data structure setup is below 0.5 seconds (left). The tree construction and
traversal requires less than 3 seconds for 226 unknowns, while being faster than
the required runtime complexity of N log N (right).

vector product. Figure 6.11 shows the measurements of the runtime for growing problem size N
and different dimensionality d. Within each performance plot, we further distinguish between
measurements that were done using a matrix-vector product with precomputed ACA factors
and with on-the-fly computation of the ACA factors. Pre-computing the ACA factors results in
a performance improvement, which will be discussed in more detail in Section 6.5.7. In the plot,
the impact is not clearly visible due to the logarithmic scaling of the vertical axis. We cannot
show runtime results with pre-computing for problem sizes beyond N “ 219 or N “ 220 due to
the limited GPU memory. For d “ 3 in Figure 6.11, we further include (gray) semi-logarithmic
plots indicating the runtime per degree of freedom and the respective N log N scaling. This
shall support readers that are more familiar to this metric.

In all cases, we observe a runtime complexity of OpN log Nq. Moreover, even for a problem
size of N “ 225, i.e. an approximated matrix-vector product for a dense matrix of 33 ˆ 33
million entries, we see a runtime of only 6 minutes for a matrix-vector product on points in
two dimensions. To be concise, we skipped here a performance study with respect to the rank
k. Here, we expect the typical quadratic complexity in k stemming from (re-)computing ACA.
We also skipped a further study for parameter η that basically balances the amount of work
in the dense blocks against the work in the low-rank blocks.

6.5.6 Performance analysis of batching

Beforehand, we discussed the performance results of our implementation using batching in all
linear algebra operations, as discussed in Section 6.4.3. However, it is important to know that
batching is one of the crucial ingredients of this code allowing for high performance of the
overall method. To show the actual impact of batching, we will analyse the performance with

158 6 Algorithmic patterns for H matrices on many-core processors

Figure 6.11: The H matrix-vector product shows the optimal algorithmic complexity of
OpN log Nq. The operation is slightly more expensive if used on points in three di-
mensions (right) in contrast to points in two dimensions (left). By pre-computing
ACA factors, performance is slightly improved. (Runtime per problem size is given
in gray.)

and without batching in the linear algebra operations. Nevertheless, before we come to this
point, we want to address the topic of parameter choice of the leaf size Cleaf and the batching
sizes bsdense and bsACA in connection with the batched operations.

Leaf size influence

The leaf size Cleaf , which has been introduced in Section 6.2.1, has a considerable influence on
the amount of leafs / blocks that are generated in the block cluster tree. Clearly, the larger
the leaf size the less blocks are generated, cf. Figure 6.12 on the left-hand size. Due to the
quadratic complexity of the construction and application of dense blocks, the usual rule of
thumb on CPUs is to keep the block sizes rather small. Here, a common choice for Cleaf seems
to be 2k or 4k, i.e. 32 and 64 for k “ 16.

To understand the impact of the leaf size on GPU-based calculations with the proposed
implementation, we perform a benchmark of the batched versions of the construction and
application of the dense and ACA blocks in the H matrix-vector product with respect to
different leaf sizes. We choose N “ 220, k “ 16, η “ 1.5, d “ 2, bsdense “ 225 and bsACA “ 223.
Figure 6.12 shows the results for this study with leaf sizes Cleaf P t32, 64, 128, . . . , 4096u. On
the left-hand side, the number of blocks is reported. As expected, it drops for larger leaf size.
The right-hand side of Figure 6.12 shows the runtime to construct and apply these blocks.
The first observation is that the amount of runtime spent in the dense blocks grows for larger
leaf size. This can be explained by the increased size of each dense block and the quadratic
runtime complexity in the block size. In contrast, the runtime spent in the low-rank blocks
drops for growing leaf size. There are two reasons for this behavior. First, the overall amount

6.5 Results 159

Figure 6.12: An increase in the leaf size Cleaf reduces the number of leafs in the block cluster
tree (left). At the same time, each leaf block gets larger. This leads to an increase
in the total runtime spent in dense blocks, while the batched ACA block calculation
becomes cheaper (right).

of computational work is reduced, since larger dense blocks “cover” parts of the system matrix.
Second, batching for ACA blocks is not as effective as for the dense block. That is, many small
ACA blocks require more runtime than few larger ACA blocks of similar total size.

The runtime results in Figure 6.12 indicate that the usual choice of Cleaf “ 2k or Cleaf “ 4k
leads to prohibitively large runtimes. This is due to the considerably faster computation times
of the dense blocks on a GPU. The best total runtime is achieved for Cleaf in the range of 1024
and 2048. While not being shown here, similar runtime studies were done for other problem
sizes N . These substantiate that the choice of Cleaf in the range of 1024 and 2048 is indeed
rather optimal. In the following studies, we will stick to these two choices.

Batching size influence

In Section 6.4.3, we introduced the parameters bsdense and bsACA as batching sizes for the
batching of the dense matrix-vector products and the batching of the adaptive cross approxi-
mation. Remember that the batching size is not exactly the amount of ory that is allowed to be
used in the batched dense / ACA operation. In general, these parameters balance the memory
consumption against the performance improvement. To understand this relationship further,
we benchmark the runtime of the batched dense matrix-vector products and the batched ACA
in the H matrix-vector product for different batching sizes. It is done for N “ 220, k “ 16,
η “ 1.5 and d “ 2. We consider results for Cleaf “ 1024 and Cleaf “ 2048, as discussed before.

Figure 6.13 collects the results for the parameter studies in the batching size for the batched
dense matrix-vector products on the left-hand side and for the batched ACA computation on
the right-hand side. Still, the choice of the leaf size Cleaf has a considerable influence on the
performance balance between dense matrix-vector products and ACA. That is, larger leaf sizes
lead to larger runtimes in the dense matrix-vector products. However the ACA runtime is

160 6 Algorithmic patterns for H matrices on many-core processors

Figure 6.13: The performance of batching strongly depends on the size of the batched array or
matrices that are used. This is clearly visible for the batching of dense matrix-
vector products (left) and adaptive cross approximation (right). The optimal
batching size is only slightly influenced by the choice of the parameter Cleaf .

reduced. The opposite holds for smaller leaf sizes. Note further that we could not perform
runtime measurements for the smaller leaf size of Cleaf “ 1024 and bsACA beyond 225 in
batched ACA, since, in this case, the amount of memory required in the storage of the ACA
factors becomes larger than the available memory on the GPU. In contrast, this was possible
for Cleaf “ 2048, since we do not store the dense blocks in memory and less memory is spent
in the low-rank factors.

The general tendency in the results in Fig. 6.13 is that increasing the batching size increases
the performance up to an optimum. Beyond this optimum, the performance of the batching gets
slightly worse. This performance improvement up to an optimum is due to the improvement
of the occupancy of the GPU. That is, the GPU gets more work to do. Thereby, it can hide
latencies etc. behind parallel work. The slight performance degradation beyond the optimum
for larger batching sizes is maybe due to a slight over-subscription of the GPU: The maximum
throughput limit is hit, however, due to more batches per batched operation, the data structure
overhead becomes visible. Note, however, that this latter reasoning is speculative.

Overall, choosing an appropriate batching size is rather simple. The rule of thumb is to take
it as large as possible (in terms of memory consumption) and to accept the slight performance
reduction for a too large batch size.

Performance improvement by batching

We next discuss the performance improvement for batched dense matrix-vector products and
for batched ACA over their respective non-batched versions. We use parameters N “ 220,
k “ 16, η “ 1.5, d “ 2, Cleaf “ 2048, bsdense “ 227 and bsACA “ 225. Figure 6.14 summarizes
the results of this study with results for the batching of dense matrix-vector products on the
left-hand side and results for the batched adaptive cross approximation on the right-hand side.

6.5 Results 161

Figure 6.14: We observe a significant performance improvement by roughly a factor of 32, when
using batching in the ACA computation (right). Batching dense matrix-vector
products still improves performance by roughly a factor of three (left).

For a problem size of N “ 220, the batched application of the dense matrix-vector products is
by more than a factor of 3 faster. We do not gain more, since, for Cleaf “ 2048, we have a lot
of large dense matrix sub-blocks which very soon fully occupy the GPU.

In contrast, the performance improvement for the adaptive cross approximation is about a
factor of 32 for N “ 220. This strong impact is due to the small amount of work that is done
for each individual ACA computation and is a significant contribution of this work.

To summarize, an efficient H matrix-vector product would not be possible without ACA
batching. However, it also pays off to do batching for the dense matrix-vector products.

6.5.7 Performance comparison against H2Lib

In the following, we aim at relating the performance of hmglib to the CPU H and H2 matrix
library H2Lib [B1̈7] in the, at time of writing this paper, latest available version. We have
chosen H2Lib, since it is under active development and an Open Source library. The H2Lib
library implements an algebra for H matrices and H2 matrices. That is, the library allows to
construct, add, multiply, factorize, etc. H and H2 matrices. Moreover, it contains modules
for the solution of problems discretized by the boundary element method. Recently, support
for a GPU-accelerated H2 matrix setup for boundary element method problems was added
[BC15], as discussed in Section 6.1. Finally, H2Lib supports shared-memory parallelism based
on OpenMP.

As argued before, the comparison of our GPU implementation, which only implements the
H matrix-vector product, with this feature-complete shared-memory parallel CPU implemen-
tation, which has been specifically optimized for H2 matrices and boundary element method
problems, might be unbalanced. However, we add this comparison to somehow relate our
performance results to currently available software in the field.

In our performance benchmarks, we try our best to fit the H2Lib implementation to our

162 6 Algorithmic patterns for H matrices on many-core processors

Figure 6.15: We compare the runtime of the H matrix setup in the H2Lib (including the com-
putation of the ACA and all dense sub-blocks) with the setup in the hmglib library
without (NP) and with (P) pre-computing the ACA. The GPU-based implemen-
tation outperforms the OpenMP-parallel CPU-based implementation by a factor
of 630 (NP) / 50 (P) on the almost equally-priced Xeon hardware.

GPU implementation, even if this means that we have to extend the H2Lib for this. In fact, we
added the ability to do ACA for a fixed rank k, which was not available in the library, before.
Moreover, we had to add assembly routines for the system matrices required in our examples.
Note here that we parallelized the new assembly routines by OpenMP identical to the already
existing assembly routines in the H2Lib. On the IBM POWER8 platform, H2Lib is compiled
with gcc 4.8.5, OpenMP support and the usual optimizations and linked against the, at time
of writing this article, latest available version of OpenBLAS (0.2.20). On the Intel architecture,
gcc 4.8.5 is replaced by the most recent version 8.1.0. All other settings are kept.

We start the comparison with a benchmark of the H matrix construction or setup phase. In
case of the H2Lib this construction phase contains the spatial data structure setup, the block
cluster tree traversal, the pre-computation of all low-rank factors and the assembly of all dense
sub-blocks of the H matrix. We choose η “ 1.5 and Cleaf “ 128. On the other hand, we choose
η “ 1.5, Cleaf “ 2048, bsdense “ 227 and bsACA “ 225 in the GPU implementation and analyse
the construction phase including pre-computation (P) of the ACA factors or without (NP) such
a pre-computation. Note that the leaf size Cleaf has a significant impact on the performance
on the method, cf. Section 6.5.6. Therefore, we adapt it for the different architectures for best
possible performance. All results in this paragraph are computed for a fixed rank of k “ 16
and dimension d “ 2.

Figure 6.15 gives the result for the first comparison. On the left-hand side, runtimes of
the setup phase are given for growing problem size. The diagram on the right-hand side
directly compares the results on the different architectures for fixed problem sizes. Except
of the GPU benchmark with pre-computing, all other benchmarks are stopped for N “ 220

due to excessive runtime or limited memory. Let us remember here that we compare a single-

6.5 Results 163

Figure 6.16: The GPU-based H matrix-vector product outperforms the OpenMP-parallel CPU-
based H matrix vector product by a factor of 4.2 on the roughly equally priced
Xeon hardware, when pre-computing the ACA factors.

GPU implementation to an OpenMP-parallel code running on 40 physical / 80 logical cores on
the Intel Xeon compute node and to an OpenMP-parallel code running on 20 physical / 160
logical cores on the IBM POWER8 compute node. In case of the largest common problem size,
i.e. N “ 220 („ one million points), the shared-memory parallel implementation requires 126.1
seconds on the Xeon system and 39.5 seconds on the POWER8 system.6 On the other hand,
the GPU implementation only needs 2.4 seconds with pre-computing and 0.2 seconds without
pre-computing. That is, it is by about a factor 630 / 50 (without / with pre-computing) faster
than the parallel code on the Xeon system, i.e. comparing roughly equally priced hardware.
Also, it is by a factor of 200 / 16 faster compared to the POWER8 system, of which the pricing
is unknown to the author. However, note again that the setup phase on CPU also pre-computes
the dense matrix sub-blocks.

Our second comparative study targets the H matrix-vector product. It is done with the
same parameters as before. The results are given in Fig. 6.16. We observe a clear performance
improvement of the larger GPU-based runs against the CPU-based results. Comparing again
the results for N “ 220, we see a runtime of about 19.6 seconds on the Xeon system and
68.4 seconds on the POWER8 system. In contrast, we get a runtime of 6.2 seconds without
ACA pre-computing and an improvement by about 30 % to 4.7 seconds with pre-computing
on GPU. This is a remarkable performance improvement by a factor of 3.2 / 4.2 on GPU over
the OpenMP-parallel running on roughly equally priced Xeon hardware. On the POWER8
system, the gain is even more pronounced with a factor of 11 / 14.6. At this point, we still
have to keep in mind that the CPU-based code assembles and stores all dense matrix sub-
blocks of the approximated matrix, beforehand, while hmglib re-computes these on-the-fly due
to memory limitations. Moreover, we still see some room for performance improvements of the
GPU implementation.

6We did not observe perfect scalability of the OpenMP parallel code on the CPU systems. This should be kept
in mind, when comparing CPU to GPU results.

164 6 Algorithmic patterns for H matrices on many-core processors

Overall, we conclude that a perfectly fair comparison is hardly possible. CPU-based imple-
mentations rely much more on pre-computation and therefore might have a slight advantage
for the H matrix-vector product, while being much slower in the setup phase. The new GPU-
based implementation tries to balance the strong memory restrictions of GPUs with a general
performance improvement. Based on the raw numbers of the equally priced Xeon hardware
CPU to GPU comparison, the GPU code outperforms the OpenMP-parallel CPU code by a
factor of 630 / 50 (without / with pre-computing) for the setup and by a factor of 3.2 / 4.2
(without / with pre-computing) in the matrix-vector product. On the POWER8 system these
are factors of 200 / 16 in the setup and 11 / 14.6 in the matrix-vector product.

6.6 Summary

This work considered the reformulation of algorithms in the construction and matrix-vector
product of H matrices for many-core parallelism. Core techniques to get fast many-core par-
allel performance were a parallel spatial data structure based on space filling curves, parallel
tree traversal and batching of many small, non-equally sized compute tasks. Using these tech-
niques, we designed new algorithms for many-core parallel H matrices. These algorithms were
transferred to a reference implementation on a GPU, which results in the GPU H matrix li-
brary hmglib. Our numerical results showed that the designed algorithms lead to a fast GPU
implementation. Comparing the new library running on one Tesla P100 SXM2 GPU to an
OpenMP-parallel version of the H2Lib library running on roughly similar priced Intel Xeon
hardware, we achieve more than a factor of 50 performance improvement in the H matrix con-
struction and about a factor of 4.2 in the matrix-vector product (using ACA pre-computing).
Note however that comparing the libraries is somewhat difficult. Nevertheless, we tried our
best to keep this comparison fair.

In the future, our new algorithms shall be extended to the use in a distributed-memory, thus
e.g. multi-GPU, context. This, however, involves to build an appropriate load balancing for the
work distribution of ACA computations and dense matrix-vector products on an entire cluster
of compute nodes equipped with many-core hardware. Moreover, the heterogeneous nature,
i.e. the existence of powerful CPUs and many-core devices, of current compute clusters could
be rather simply included by transferring a part of the numerical linear algebra work queue to
the CPUs. Thereby, an even higher performance could be achieved on these systems.

6.7 Appendix: Batched bounding box computation

As part of the traversal of the block cluster tree, we have to evaluate the admissibility condi-
tion (6.3) for index blocks τ ˆ σ involving the bounding boxes of τ and σ in each node. In
the following, we will discuss an algorithm to concurrently compute the bounding boxes for
clusters τ , σ in all nodes on a given level l of the block cluster tree. The algorithm is based on
batching, cf. Section 6.4.3.

We collect the set of nodes on a level l of the block cluster tree, i.e. VIˆIplq, in the array
node_data of length |VIˆIplq| composed of structs work_item and have the input points Y
in an instance of struct point_set, cf. Section 6.4.1. As simplification, we only consider the

6.7 Appendix: Batched bounding box computation 165

Figure 6.17: The boundary box computation is sped up by pre-computing bounding boxes for
each cluster, once. They are stored in bb_lookup_table and accessed via a map
between work items and the lookup table.

concurrent computation of the bounding boxes for one cluster set, e.g. τ , in each node / block
cluster.

Note that standard implementations of H matrix algorithms first build a cluster tree and
then construct the block cluster tree. In that case, it is natural to compute the bounding boxes
of each cluster in the cluster tree construction. We here, however, have chosen a different
approach. That is, we construct the block cluster tree without first building a cluster tree.
This is efficient with respect to the clustering, since the Morton ordering of the point sets
makes clustering cheap. Moreover, we prefer to do just one tree traversal (for the block cluster
tree) instead of several tree traversals (for two cluster trees and the block cluster tree) to
maximize the utilization of the many-core processor within a single tree traversal. However,
this comes at the price that the bounding box computation becomes part of the block cluster
tree traversal, which is quite unusual. To avoid to compute bounding boxes for a single cluster
many times, we divide the bounding box calculation in a pre-processing step and the bounding
box assignment. In the pre-processing step, we extract from all block clusters the list of clusters.
This list potentially contains multiple copies of clusters. We then unify this list to create a
unique list of clusters. For each unique cluster in that unified list, we compute the bounding
boxes and store them in a lookup table. This corresponds to computing the bounding boxes
on the cluster tree. In the bounding box assignment step, we use a lookup table to assign
the pre-computed bounding boxes to the clusters in the block cluster tree. Thereby, we avoid
recomputing bounding boxes for identical clusters.

Since the algorithmic demanding step is the pre-processing step, we stick to the description of
this step. Here, we first identify the set of unique clusters, as defined before. We then create a
lookup table bb_lookup_table storing for each unique cluster the bounding box information.
In addition, we need a map from a node in node_data to the entry in the lookup table.
Figure 6.17 exemplifies this idea.

Algorithm 14 describes our approach to compute the entries of the lookup table
bb_lookup_table. Function compute_bounding_box_lookup_table gets as input the
coordinate array coords of the input point set Y, the nodes VIˆIplq on level l in node_data, and

166 6 Algorithmic patterns for H matrices on many-core processors

Algorithm 14 Compute bounding box lookup table
procedure compute_bounding_box_lookup_table(node_data, coords, l, |VIˆIplq|)

(lower_bounds, upper_bounds) Ð get_index_bounds(node_data)
stable_sort(lower_bounds)
stable_sort(upper_bounds)
unique(lower_bounds, unique_lower_bounds)
unique(upper_bounds, unique_upper_bounds)
lookup_table_size Ð |lower_bounds|

batch_bounds Ð (unique_lower_bounds, unique_upper_bounds)
sequence(unique_set_indices, lookup_table_size, 1)
init<|Y|>(batch_keys,0)
batch_keys Ð create_keys(batch_bounds, unique_set_indices, |Y|, lookup_table_size)
(coord_maxima, output_keys) Ð reduce_by_key(coords, batch_keys,maximum)
(coord_minima, output_keys) Ð reduce_by_key(coords, batch_keys,minimum)
remove_by_key(coord_maxima, output_keys, 0) Ź Remove invalid compute results
remove_by_key(coord_minima, output_keys, 0)
bb_lookup_table Ð (coord_minima, coord_maxima)
return bb_lookup_table

Algorithm 15 Generator for map to bounding box table
procedure create_map_for_bounding_boxes(node_data, l, |VIˆIplq|)

(lower_bounds, upper_bounds) Ð get_index_bounds(node_data)
sequence<|VIˆIplq|>(permutation, |VIˆIplq|) Ź permutation Ð p0, 1, . . . , |VIˆIplq|q

stable_sort_by_key(permutation, lower_bounds)
init<|VIˆIplq|>(map, 0)
set_bounds_for_map<|VIˆIplq|>(map, lower_bounds)
inclusive_scan(map, map, 0, |VIˆIplq|)
permute_map<|VIˆIplq|>(map, permutation)
return map

further size information. First, the lower index bounds il,1 and upper index bounds iu,1 are ex-
tracted from each node and stored in arrays lower_index_bounds and upper_index_bounds.
By construction, the (block) cluster tree traversal based on Z-order curves only creates clusters
that do not overlap in the point set array and that, for a given lower index bound, will always
have the same upper bound. Therefore, we can use parallel sorting and unification methods to
identify the set of unique clusters. The unique clusters are collected (by their lower and upper
index bounds) in unique_lower_index_bounds and unique_upper_index_bounds. The final
step is to compute the coordinate minima and maxima in each cluster. This step follows the
idea of batching, cf. Section 6.4.3. The batched array is the array of coordinates. The bounds
for the batches are given by the unique lower and upper index bounds and the keys for the
batches are the sequence of numbers t1, 2, . . .u. Results in the batched computation that are
associated to points in Y and not being part of any cluster are finally removed by removing all
batched compute results associated to the key 0.

6.7 Appendix: Batched bounding box computation 167

Figure 6.18: Creating the map between a work item and an entry in the lookup table requires
sorting, a compute kernel for bounds assignment, a scan operation and a permu-
tation operation.

Our approach to compute the map between the nodes in node_data and the lookup table
is summarized in Algorithm 15. Again, we first get the lower and upper index bounds. Then,
without loss of generality, we sort the lower bounds of the clusters and keep the applied permu-
tation in permutation. Next, we create a global array map of length |VIˆIplq| and initialize it
to “0”. The parallel kernel set_bounds_for_map of |VIˆIplq| threads then sets a “1” in map
wherever there are two different subsequent entries in the sorted lower_bounds. By an inclu-
sive scan on map, we create growing indices in map marking identical entries in lower_bounds.
The result is exemplified in Fig. 6.18. We finally permute back map by kernel permutation
with |VIˆIplq| threads leading to the required map.

Acknowledgements

The author would like to thank the anonymous referees for their enlightening remarks. This
work is funded by the Swiss National Science Foundation (SNF) under project number
407540_167186. Furthermore, code developments tasks in this research were done on resources
of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which
is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725. The IBM POWER8 system with the NVIDIA Tesla P100 SXM2 used in
the benchmarks for this research was donated by the NVIDIA PSG Cluster. All funding and
support is gratefully acknowledged.

References

[ABC`14] E. Agullo, B. Bramas, O. Coulaud, E. Darve, M. Messner, and T. Takahashi. Task-
based FMM for multicore architectures. SIAM Journal on Scientific Computing,

168 6 Algorithmic patterns for H matrices on many-core processors

36(1):C66–C93, 2014.

[AHTD17] A. Abdelfattah, A. Haidar, S. Tomov, and J. Dongarra. Novel HPC techniques to
batch execution of many variable size BLAS computations on GPUs. In Proceedings
of the International Conference on Supercomputing, ICS ’17, pages 5:1–5:10, New
York, NY, USA, 2017. ACM.

[B1̈7] S. Börm. H2Lib, a library for hierarchical matrices, 2017.

[BC15] S. Börm and S. Christophersen. Approximation of BEM matrices using GPGPUs.
ArXiv e-prints, October 2015.

[Beb] M. Bebendorf. AHMED Another software library on hierarchical matrices for elliptic
differential equations.

[Beb08] M. Bebendorf. Hierarchical Matrices - A Means to Efficiently Solve Elliptic Bound-
ary Value Problems, volume 63 of Lecture Notes in Computational Science and
Engineering. Springer, 2008.

[BET99] M. Bern, D. Eppstein, and S.-H. Teng. Parallel construction of quadtrees and
quality triangulations. International Journal of Computational Geometry & Appli-
cations, 09(06):517–532, 1999.

[BGH03] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices
with applications. Engineering analysis with boundary elements, 27(5):405–422,
2003.

[BH11] N. Bell and J. Hoberock. Thrust: A productivity-oriented library for CUDA. GPU
computing gems Jade edition, 2:359–371, 2011.

[BK09] M. Bebendorf and S. Kunis. Recompression techniques for adaptive cross approxi-
mation. J. Integral Equations Applications, 21(3):331–357, 09 2009.

[BLL`] W. Boukaram, H. Ltaief, A. Litvinenko, A. Abdelfattah, and D. E. Keyes. Accel-
erating matrix-vector multiplication on hierarchical matrices using graphical pro-
cessing units.

[Bör04] S. Börm. H2-matrices - Multilevel methods for the approximation of integral oper-
ators. Computing and Visualization in Science, 7(3):173–181, Oct 2004.

[BR03] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation
matrices. Computing, 70(1):1–24, 2003.

[BTLK17] W. H. Boukaram, G. Turkiyyah, H. Ltaief, and D. E. Keyes. Batched QR and SVD
Algorithms on GPUs with Applications in Hierarchical Matrix Compression. ArXiv
e-prints, July 2017.

[CKL] A. Charara, D. E. Keyes, and H. Ltaief. Batched triangular dense linear algebra
kernels for very small matrix sizes on GPUs. ACM Transactions on Mathematical
Software.

6.7 Appendix: Batched bounding box computation 169

[Fas07] G. F. Fasshauer. Meshfree Approximation Methods with MATLAB. World Scientific
Publishing Co., Inc., River Edge, NJ, USA, 2007.

[GKLB08] L. Grasedyck, R. Kriemann, and S. Le Borne. Parallel black box-LU preconditioning
for elliptic boundary value problems. Computing and Visualization in Science,
11(4):273–291, 2008.

[GLR`16] P. Ghysels, X. S. Li, F. Rouet, S. Williams, and A. Napov. An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized
sampling. SIAM J. Scientific Computing, 38(5), 2016.

[GPM11] K. Garanzha, J. Pantaleoni, and D. McAllister. Simpler and faster HLBVH with
work queues. In Proceedings of the ACM SIGGRAPH Symposium on High Perfor-
mance Graphics, HPG ’11, pages 59–64, New York, NY, USA, 2011. ACM.

[GR97] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta numerica, 6:229–269, 1997.

[Hac15] W. Hackbusch. Hierarchical matrices : Algorithms and Analysis, volume 49 of
Springer series in computational mathematics. Springer, Berlin, 2015.

[Hac16] W. Hackbusch. Survey on the technique of hierarchical matrices. Vietnam Journal
of Mathematics, 44(1):71–101, 2016.

[HB02] W. Hackbusch and S. Börm. H2-matrix approximation of integral operators by
interpolation. Applied numerical mathematics, 43(1-2):129–143, 2002.

[HKS00] W. Hackbusch, B. Khoromskij, and S. A. Sauter. On H2-matrices. In Lectures
on Applied Mathematics: Proceedings of the Symposium Organized by the Sonder-
forschungsbereich 438 on the Occasion of Karl-Heinz Hoffmanns 60th Birthday,
Munich, June 30–July 1, 1999, page 9. Springer Science & Business Media, 2000.

[HN89] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Numerische Mathematik, 54(4):463–491, 1989.

[Kri05] R. Kriemann. Parallel H-matrix arithmetics on shared memory systems. Comput-
ing, 74(3):273–297, 2005.

[Kri13] R. Kriemann. H-LU factorization on many-core systems. Comput. Vis. Sci.,
16(3):105–117, June 2013.

[Kri17] R. Kriemann. H-Libpro (website), 2017.

[LGS`09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
construction on GPUs. Computer Graphics Forum, 28(2):375–384, 2009.

[MGG12] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU graph traversal. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’12, pages 117–128, New York, NY, USA, 2012.
ACM.

170 6 Algorithmic patterns for H matrices on many-core processors

[Mor66] G. Morton. A computer oriented geodetic data base and a new technique in file
sequencing. Technical Report Ottawa, Ontario, Canada, 1966.

[MXYB16] W. B. March, B. Xiao, C. Yu, and G. Biros. ASKIT: An efficient, parallel library
for high-dimensional kernel summations. SIAM Journal on Scientific Computing,
38:S720–S749, 01 2016.

[Pou] J. Poulson. DMHM - Distributed-Memory Hierarchical Matrices.

[RLGN16] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov. A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization.
ACM Trans. Math. Softw., 42(4):27:1–27:35, June 2016.

[RW05] C. Rasmussen and C. Williams. Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, 2005.

[SDC07] Z. Sheng, P. Dewilde, and S. Chandrasekaran. Algorithms to Solve Hierarchically
Semi-separable Systems, pages 255–294. Birkhäuser Basel, Basel, 2007.

[Szu16] J. Szuppe. Boost.Compute: A parallel computing library for C++ based on
OpenCL. In Proceedings of the 4th International Workshop on OpenCL, IWOCL
’16, pages 15:1–15:39, New York, NY, USA, 2016. ACM.

[Val90] L. G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990.

[Vov13] V. Vovk. Kernel Ridge Regression, pages 105–116. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2013.

[Wen04] H. Wendland. Scattered Data Approximation. Cambridge University Press, 2004.

[YAM`15] P. Yalamanchili, U. Arshad, Z. Mohammed, P. Garigipati, P. Entschev, B. Klop-
penborg, J. Malcolm, and J. Melonakos. ArrayFire - A high performance software
library for parallel computing with an easy-to-use API, 2015.

[YB13] R. Yokota and L. Barba. FMM-based vortex method for simulation of isotropic
turbulence on GPUs, compared with a spectral method. Computers & Fluids,
80:17 – 27, 2013.

[YBK10] R. Yokota, L. Barba, and M. G. Knepley. PetRBF A parallel O(N) algorithm for
radial basis function interpolation with Gaussians. Computer Methods in Applied
Mechanics and Engineering, 199(25):1793 – 1804, 2010.

[Zas17] P. Zaspel. MPLA - Massively Parallel Linear Algebra, 2017.

[Zas18] P. Zaspel. hmglib - Hierarchical matrices on GPU(s) library, 2018.

7 A scalable H-matrix approach for the
solution of boundary integral equations on
multi-GPU clusters

7.1 Introduction

The numerical solution of boundary integral equations is an important task in applications
from science and engineering such as electric field computations, electromagnetism, acoustic
scattering, or fluid mechanics [HW08]. Boundary integral equations arise typically from the
reformulation of boundary value problems with constant coefficients. In many cases, such a
reformulation is advantageous, since a discretization of a boundary integral equation requires
the introduction of degrees of freedom just on the boundary, while the original partial differential
equation needs to be discretized in the full domain, which might be unbounded in case of
exterior boundary value problems.

Besides the collocation method, the standard approach for discretizing and solving boundary
integral equations is based on a Galerkin discretization which amounts to the boundary element
method (BEM), see [GKW03, SS11, Ste08] for example. BEM applies standard techniques
known from the finite element method (FEM) to the boundary integral equation case. Since the
kernel of a boundary integral operator is usually not compactly supported and singular at the
diagonal, the stiffness matrix of a BEM discretization is densely populated and computationally
expensive to compute. To overcome the cubic complexity of direct factorization approaches,
iterative solvers with fast approximate matrix-vector products are used to solve the system of
linear equations. Candidates for matrix approximations are the panel clustering [HN89], the
fast multipole method [GR97], hierarchical (H) matrices [Beb08, BGH03, Hac15, Hac16] or
H2 matrices [Bör04, HB02, HKS00]. We here focus on H-matrices, since these are a widely
use approach and, together with adaptive cross approximation (ACA) [BR03], allow for a
purely algebraic construction of the matrix approximation, facilitating its use in real-world
applications. For a given fixed accuracy, it is possible to show that the approximate matrix-
vector product of H-matrices can be done in OpN log Nq operations.

The objective of this work is to solve large-scale BEM problems by the hierarchical matrix
approach. In fact, we aim for solving systems of linear equations from BEM discretizations
with hundreds of thousands or millions of unknowns. Such problem sizes arise if the underlying
geometry is either very complex or if a solution with a small numerical error is required.

We observe two difficulties when it comes to the solution of large-scale BEM problems.
First, the computational runtime becomes excessively large. Second, the required memory is
considerable. While the first problem can be addressed by a parallelization of a hierarchical
matrix library on a single compute node with high amounts of memory, the second problem
can only be fixed by a distributed-memory parallelization of the hierarchical matrix approach.

171

172 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

Our conclusion is to work on a distributed-memory parallel implementation for H-matrices. In
particular, we apply and extend the many-core parallel Open Source library hmglib [Zas17,
Zas18] in order to treat BEM-type problems in a distributed-memory parallel way.

hmglib is a many-core parallel library allowing to set up and apply H-matrices on a single
graphics processing unit (GPU). It has been originally developed in the context of the approx-
imation of system matrices from kernel collocation or kernel ridge regression, where it showed
decent performance improvements over a parallel H-matrix implementation on standard pro-
cessors (CPUs). As part of the present work, hmglib has been extended such that it can be
applied to arbitrary application codes with dense system matrices, as long as the codes pro-
vide a means to evaluate matrix entries and the geometric location of the involved degrees of
freedom. That is, hmglib now provides a general interface e.g. for BEM codes. Moreover, and
much more important, the library has been extended such that it is now able to run on the
GPUs of a distributed-memory parallel cluster of GPUs.1 This allows to scale the solution of
BEM problems on up to millions of unknowns. While the original implementation of hmglib
in [Zas17, Zas18] could only pre-compute low-rank blocks, the new implementation is further
able to pre-compute and store the (non-admissible) dense matrix blocks in (GPU) memory.
This is crucial for BEM applications.

Note that there is a series of related CPU libraries for parallel hierarchical matrices. H-Libpro

[BGH03, GKLB08, Kri05, Kri17] is a commercial shared-memory parallel library with limited
distributed-memory support. AHMED (Another software library on hierarchical matrices for el-
liptic differential equations) [Beb] and DMHM (Distributed-Memory Hierarchical Matrices) [Pou]
provide distributed-memory support on CPUs. H2Lib [B1̈7] is shared-memory parallel. In the
related field of Hierarchically Semi-Separable (HSS) matrices [SDC07], the software STRUMPACK
[GLR`16, RLGN16] is shared- and distributed-memory parallel. In context of many-core pro-
cessors, i.e. GPUs and e.g. Intel Xeon Phi, there is some recent work. An extension to the
H2Lib [BC15] allows to accelerate the quadrature in a H2 matrix method for BEM by GPUs.
A similar approach is used in the BEM library Bempp [SBA`15, VBD17]. Furthermore, [Kri13]
discusses a many-core parallel LU-factorization for H-matrices on a Xeon Phi device. BEM4I
[KMMZ18, MZ18] provides a BEM library with ACA running on clusters of multi-/many-core
hardware by Intel based on an MPI, OpenMP and vectorization parallelization. In [OYIY18],
the H-matrix vector product (without setup) has been parallelized on a single GPU and on
Intel processors. The new tile low rank (TLR) format is used in HiCMA a library for low-rank
Cholesky factorizations on clusters of multi-core and many-core hardware running on Intel
hardware [ALM`18] and with the main application of Matérn-type covarice matrices. By some
of the authors of [ALM`18], further work has been carried out, which focused on batched dense
linear algebra kernels [CKL17] on a single GPU, batched QR and SVD algorithms [BTLK18]
on GPUs and a batched TLR GEMM operation on a single GPU [CKL18]. However, to the
best of the authors’ knowledge, we here discuss the first fully GPU-based distributed-memory
parallel hierarchical matrix Open Source library using the traditional H-matrix format and
adaptive cross approximation being applied to BEM problems.2

1The authors do not stick to a GPU+CPU (i.e. GPU acceleration) approach although this approach would
better reflect currently available GPU-accelerated HPC installations. This decision has been made since the
authors want to tackle the research questions that are connected to large to extreme processing core counts,
which are present in case of a GPU-only implementation.

2Note that during the review process of this work, [YAI`18] was published. It discusses the (multi-) GPU-

7.2 Mathematical background 173

To be able to apply our parallel library to a (large-scale) BEM model problem, we further
parallelized an existing sequential CPU code for the solution of elliptic problems by the single-
layer potential ansatz with piecewise constant basis functions on GPU and coupled that code
to hmglib. Thereby, we will be able to show that we can solve large-scale BEM problems in the
range of millions of unknowns with a descent strong scaling beyond 68 percent strong scaling
efficiency on 1024 GPUs of Titan at Oak Ridge National Lab (starting from 128 GPUs due to
memory limitations).

The remainder of this work is structured as follows. In Section 7.2, we introduce the math-
ematical background of boundary integral equations, the boundary element method and the
hierarchical matrix approach. Section 7.3 briefly reviews the computational details of hmglib
and introduces the new general application interface, the dense block storage and multi-GPU
parallelization. Numerical results and parallel scalability studies are discussed for a model
application and a model code in Section 7.4. We finish by conclusions in Section 7.5.

7.2 Mathematical background

7.2.1 Boundary integral equations

Shall Ω Ă Rd with d “ 3 be a Lipschitz domain and Γ :“ BΩ its surface. We aim at solving
boundary integral equations of type

pAuqpxq :“
ż

Γ
Gpx, x1qupx1qdσx1 “ fpxq , x P Γ , (7.1)

where A is supposed to be an invertible boundary integral operator. We assume that A is a
continuous and elliptic operator of order 2q, which means that it maps from HqpΓq to H´qpΓq.
We require the integral kernel G : Ω ˆ Ω Ñ R to be asymptotically smooth, that is, we require
to have constants Cas1, Cas2 P Rą0 such that

|Bα
x B

β
x1Gpx, x1q| ď Cas1

p|α| ` |β|q!
pCas2}x ´ x1}q|α|`|β|

|Gpx, x1q|

for arbitrary x, x1 P Ω with x ‰ x1 and all multi-indices α, β P Nd
0. This choice allows for

kernel functions with singularities at the diagonal x “ x1, while being smooth away from the
diagonal.

Example 7.1. Boundary integral equations of the above type arise in context of the solution
of the Laplace equation

∆U “ 0 in Ω, U “ f on Γ,

where U P H1pΩq is the solution for given Dirichlet data f P H1{2pΓq. Since we know the

parallelization of an iterative H-matrix BiCGStab solver by means of batched MAGMA routines and MPI.
This GPU-acceleration work focuses only on the solver (i.e. not the matrix assembly or the H-matrix setup
and therefore discusses a sub-set of the work discussed here.

174 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

fundamental solution of the Laplace operator, we can make the the single-layer potential ansatz

Upxq “

ż

Γ

upx1q

4π}x ´ x1}2
dσx1 “ S̃upxq , x P Ω . (7.2)

That is, we describe the solution of the Laplace equation by means of the unknown density
u P H´1{2pΓq. Since the single-layer potential is continuous in the whole space Rd, the density
is obtained by solving the boundary integral equation

pSuqpxq “

ż

Γ

upx1q

4π}x ´ x1}2
dσx1 “ fpxq , x P Γ , (7.3)

where S : H´1{2pΓq Ñ H1{2pΓq is the single-layer operator and f the Dirichlet data of the
Laplace equation. It can be shown that the kernel function 1

4π}x´x1}2
is asymptotically smooth

and that S is continuous and continuously invertible. 4

7.2.2 Galerkin BEM discretization

To solve (7.1) by the boundary element method (BEM), we first bring the equation in its
variational form: Find u P V p“ HqpΓqq, such that

ż

Γ

ż

Γ
Gpx, x1qupx1qvpxqdσx1dσx “

ż

Γ
fpxqvpxqdσx for all v P V .

We discretize it by introducing an approximation of the boundary Γ by surface elements

Th :“ tT1, . . . , TM u

of size Ophq. The elements Ti are usually chosen as planar triangles, cf. [GKW03, Ste08, SS11].
Nonetheless, parametric representations of the surface have recently been become quite popu-
lar. Then, Th would be a structured quadrangulation and Ti a curved quadrangle, cf. [HR10,
MZBF15, DHK`18].

The elements induce a set of nodes

Xh :“ tx1, . . . , xN u .

We associate to each node xi a locally supported piecewise polynomial ϕi of order p leading to
a finite-dimensional trial space

Vh “ tϕ1, . . . , ϕN u Ă V .

Then, we look for an approximate solution uh P Vh, such that
ż

Γ

ż

Γ
Gpx, x1quhpx1qvhpxqdσx1dσx “

ż

Γ
fpxqvhpxqdσx for all vh P Vh .

7.2 Mathematical background 175

With uhpxq :“
řN

i“1 αiϕipxq, we finally have to solve the dense linear system

Aα “ f (7.4)

with
A “ rai,jsN

i,j“1, ai,j “

ż

Γ

ż

Γ
Gpx, x1qϕipx

1qϕjpx1qdσx1dσx

and
f “ rfis

N
i“1, fi “

ż

Γ
fpxqϕipxqdσx .

7.2.3 Hierarchical matrices
We aim at solving (7.4) by an iterative method. To make this tractable for large N , we use
an approximate matrix-vector product for the Galerkin system matrix A. Our choice is to use
the purely algebraic hierarchical matrices [BGH03, Hac15] with adaptive cross approximation
[BK09, BR03], leading to OpN log Nq complexity for the matrix-vector product, if we fix the
approximation tolerance.

Let us briefly consider the approximation of the Galerkin system matrix A by hierarchical
matrices. We first introduce the concept of index sets I :“ t1, . . . , Nu, representing the nodes
Xh “ tx1, . . . , xN u and basis functions VN “ tϕ1, . . . , ϕN u on Γ. Thereby we can associate an
index tuple pi, jq to a geometric location and to each entry ai,j of the system matrix A. We
will group these index sets into clusters τ Ă I based on geometrical arguments. The product
of two clusters (i.e. a block cluster), e.g. τ ˆ σ Ă I ˆ I, can then be translated to a sub-matrix
A|τˆσ of our Galerkin system matrix A.

The core idea of hierarchical matrices relies on the fact that for an asymptotically smooth
kernel, the evaluation of

ş

Γ
ş

Γ Gpx, x1qϕipx
1qϕjpx1qdσx1dσx for two geometrically well separated

basis functions ϕi, ϕj can be approximated with a controlled, small error. This can be expanded
to the admissibility, i.e. the approximability, of a whole block cluster (of nodes). A typical
admissibility condition for a block cluster τ ˆ σ is based on the bounding boxes for clusters
τ , σ (compare e.g. [Hac15] for alternatives). The bounding box of cluster τ Ă I is Qτ :“
ś3

i“1
“

a
piq
τ , b

piq
τ

‰

with a
piq
τ :“ minjPτ x

piq
j , b

piq
τ :“ maxjPτ x

piq
j and xj :“

`

x
p1q

j , x
p2q

j , x
p3q

j

˘J. Then,
we can introduce the admissibility condition

min tdiampQτ q, diampQσqu ď ηdistpQτ , Qσq , (7.5)

where η P Rě0 balances convergence and algorithmic complexity and
diampQτ q and distpQτ , Qσq are the diameter and the distance of bounding boxes, respectively,
cf. [BGH03].

Clusters τ shall always collect geometrically close nodes. They are collected in a cluster tree
TI “ pVI , γq, which imposes a spatial data structure with a hierarchy on I (or XN). With
VI Ă PpIq being the set of nodes in the tree, i.e. the clusters, γ a mapping γ : VI Ñ PpVIq of
each cluster to its hierarchical sub-clusters, a cluster tree is given such that

(C1) τ P PpIqztHu, for all τ P VI ,

(C2) rootpT q “ I,

176 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

Algorithm 16 Algorithm to build a block cluster tree
procedure build_block_cluster_tree(τ ˆ σ, Cleaf)

if τ ˆ σ is not admissible and |τ | ą Cleaf and |σ| ą Cleaf then
γpτ ˆ σq Ð H

for τ 1 P γpτq do Ź Loop over children in cluster trees.
for σ1 P γpσq do

γpτ ˆ σq Ð γpτ ˆ σq Y tτ 1 ˆ σ1u Ź Add new child.
build_block_cluster_tree(τ 1 ˆ σ1, Cleaf)

else
γpτ ˆ σq Ð H Ź τ ˆ σ becomes leaf.

(C3) if τ P VI is a leaf, i.e. γpτq “ H, then |τ | ď Cleaf and

(C4) if τ P VI is no leaf, then it has exactly two children γpτq “ tτ1, τ2u and τ “ τ1 Ÿ τ2.

In cardinality-based clustering (CBC), which will be use in this work, we further impose |τ1| «

|τ2| in (C4).
With a given cluster tree, we can introduce the block cluster tree TIˆI “ pVIˆI , γ, µq, which

builds a hierarchy of block clusters out of the given cluster hierarchy. Here, VIˆI is the set
of nodes / block clusters in the tree and γ maps a block cluster to its children. Algorithm 16
recursively defines the block cluster tree and is launched with τ ˆ σ “ I ˆ I.

The corresponding sub-matries A|τˆσ P R|τ |ˆ|σ| of admissible block clusters in TIˆI are
approximated by an Rpkq matrix Rτˆσ P R|τ |ˆ|σ|, a matrix of maximum rank k, which is
defined as

Rτˆσ “ UτˆσV J
τˆσ, Uτˆσ P R|τ |ˆk, Vτˆσ P R|σ|ˆk .

Matrix-vector products with Rpkq matrices Rτˆσ have a computational complexity of
O pr ¨ p|τ | ` |σ|qq. As in [Zas17]. we will use the algebraic adaptive cross approximation (ACA)
[BR03, BK09] with partial pivoting to approximate sub-matrices A|τˆσ P R|τ |ˆ|σ|. ACA can
be seen as a pivoted Gauss elimination and constructs a low-rank approximation by successive
rank-one updates.

Given a rank k P N and a block cluster tree TIˆI , we introduce an H-matrix of block-wise
rank k as matrix L P R|I|ˆ|I| such that

rankpL|τˆσq ď k

for all admissible τ ˆ σ. The construction of an H-matrix for a dense matrix is known as
truncation. Matrix-vector products between H-matrices an vectors are realized by a recursive
traversal of the block cluster tree. In each non-admissible leaf, the corresponding (precomputed)
full sub-matrix is applied, while in admissible leafs the (pre-computed) low-rank approximation
is applied. It has been shown, that specific versions of this approach allow to perform an H-
matrix-vector product in complexity Opk ¨ N log Nq [Hac15].

7.3 Scalable parallel H-matrix approach for BEM 177

7.3 Scalable parallel H-matrix approach for BEM
Our approximation of the Galerkin matrix by hierarchical matrices is based on the library
hmglib [Zas17, Zas18]. The present work aims at extending hmglib such that it can be used
for the multi-GPU parallel solution of large-scale boundary integral equations discretized by
the boundary element method. To this end, an abstract code interface, precomputation of
dense matrix blocks and a distributed-memory parallelization had to be introduced. In the
following, we give a brief overview of the original implementation [Zas17] and discuss the new
techniques that have been added to hmglib.

Remark on technical details. Note that an in-depth technical description of state-of-the-art
GPU-parallel codes requires a lot of technical details, such as memory hierarchies, paralleliza-
tion models, scheduling, caching, etc. As in [Zas17], we here stick to a much less technically
overwhelming discussion. To this end, we categorize parallel work loads either into work loads
that can be handled by the use of a large amount of parallel threads working on independent
tasks or into work loads that require the use of more complicated algorithms with complex
thread interactions, such as reduction operations. While the first type of work loads can be
easily parallelized by standard GPU parallelization techniques, i.e. in CUDA kernels, we use
existing GPU libraries for the second type of work loads, whenever this is possible.

7.3.1 hmglib - A many-core parallel H-matrix library
The Open Source GPU library hmglib has originally been developed for the approximation
of matrices from kernel interpolation / collocation or kernel ridge regression. It uses a given
single GPU for all work loads involved in the construction and application of a hierarchical
matrix, i.e. it is not an accelerated but a solely GPU-based software. To be able to get high
performance on GPU, the library uses a parallel traversal of the block cluster tree, space-filling
curves (to build the clustering) and the concept of batching for many small similarly-sized
work loads. In terms of software and hardware, it requires an Nvidia GPU and uses the CUDA
Toolkit, i.e. CUDA kernels [Hal08] for direct GPU programming, the STL-type algorithm
library Thrust [HB10] running in parallel on a GPU and the BLAS/LAPACK-type libraries
CUBLAS and Magma [DGH`14, HDT`15].

Block cluster tree traversal. To get a high parallel performance on many-core hardware, it
is necessary to express an existing algorithm in a very parallel way. In [Zas17], this has been
achieved for the construction and traversal of the block cluster by level-wise parallelization
of the tree traversal. That is, all entries of a given level of a tree are computed in a many-
core parallel fashion, while calculations of offsets in the memory are computed by appropriate
parallel scan operations. Figure 7.1 outlines this methodology. The red arrows on a given level
correspond to the parallel threads that are executed on the GPU. As it becomes obvious, the
first few levels of a tree do not lead to a full parallel utilization. However, on higher levels, this
limitation is no longer present.

Spatial data structure. While classical implementations of H-matrices use spatial data struc-
tures such as kD-trees or quad-/oct-trees, clustering in hmglib is based on space filling curves

178 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

Figure 7.1: In hmglib, tree traversal is parallelized in a level-wise fashion. The red arrows on
each level correspond to the executed parallel threads.

[LGS`09, Mor66, Zas17]. In particular, a Morton code [Mor66] is computed for each node
in Xh. This computation is done in a many-core parallel way. After sorting the points in
Xh following their Morton codes by a GPU-parallel sorting method, two consecutive nodes in
the resulting (sorted) array of nodes are geometrically close. In particular, cardinality-based
clustering, cf. Section 7.2.3, can be reduced to simple array decompositions.

Batching. As shown in [Zas17], the highest impact on the GPU-parallel performance of the
hmglib code is achieved by batching of small similarly sized compute work loads into bigger
batches of compute work. This is specifically used in hmglib in the context of the compu-
tation of dense matrix blocks Aτˆσ and low-rank matrix blocks Rτˆσ and in context of the
determination of bounding box sizes for the clusters. Figure 7.2 outlines the general strategy.
Instead of solving (in parallel) several small problems (e.g. the summation of several numbers),
all these operations are batched together in one bigger work load. This allows to achieve a
much higher utilization of the GPU and, thus, leads to higher performance. While this strategy
is supported in Thrust for, e.g., reduction operations by providing index arrays marking the
sub-workloads, more complex algorithms such as the adaptive cross approximation in hmglib
had to be adapted to use this new strategy.

7.3.2 Abstract program interface.

In [Zas17], hmglib was just used for system matrices from kernel interpolation / collocation or
kernel ridge regression. Such matrices require the evaluation of a very simple kernel function
G, which was hard-coded. The new developments in the context of this work start adding an
interface for arbitrary application codes that provide custom matrix entries of system matrices
that shall be approximated. Besides of standard configuration options for H-matrices, three
general inputs have to be provided by an application code:

7.3 Scalable parallel H-matrix approach for BEM 179

Figure 7.2: Instead of solving several smaller problems in parallel, batching, as used in hmglib,
aims at combining all problems into a single much bigger work load, leading to a
higher utilization and higher performance of a GPU.

1. The sets of nodes X1 :“

x
p1q

1 , . . . , x
p1q

N1

(

, X2 :“

x
p2q

1 , . . . , x
p2q

N2

(

. In our BEM application,
we have X1 “ X2 “ Xh.

2. Functions idx1 : X1 Ñ N, idx2 : X2 Ñ N, associating to each node an index. This allows
to introduce an hmglib- and ordering-independent way to identify the nodes in X1 and
X2 by the application. In our application, this is simply the index of the nodes.

3. A callback-type function that can be called by hmglib in order to evaluate a single entry
ai,j of the system matrix AX1ˆX2 for which the H-matrix shall be constructed. In our
application, this is the quadrature routine that computes the matrix entry

ai,j “

ż

Γ

ż

Γ
Gpx, x1qϕipx

1qϕjpx1qdσx1dσx .

Technical challenge. It turned out that developing a generalized way to provide a callback
function for the matrix entry evaluation is not easy, at least in connection with the CUDA
programming language extension provided by the CUDA Toolkit 8.0. While it is technically
possible to use function pointers to device functions, i.e. functions that are executed on and
launched from GPU, the practical use of these pointers leads to a strongly reduced performance.
In order to work around this, we provide a purely virtual abstract device basis class with a
function get_matrix_entry. This class is overwritten by the application that aims to use
hmglib. At the same time, hmglib uses dynamic polymorphism to launch get_matrix_entry
in an application-independent way.

Nonetheless, this solution introduces two difficulties. The first difficulty is in the memory
management of the interface device class. It has to be instantiated and destroyed from device
code. Therefore, its use in a library context, in which the interface code is supposed to run
on CPU, tends to be rather involved. The second difficulty shows up in the compile and link

180 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

process between the library hmglib and the application code. Ideally, the aim would be to
provide hmglib as a shared library. However, in order to be able to use dynamic polymorphism
on GPUs in the context of CUDA, it is necessary to put the calling device code, the abstract
device basis class and the overwriting device class into the same compilation unit. While it is
still possible to individually compile the device code for the calling code, the basis class and the
overwriting class into device-only object files, these object files have to be linked by the device
code linker before they can be put together with the CPU / host code. In practice, this breaks
the clear distinction of library and application code. To the best of the authors’ knowledge,
there is currently no alternative to this approach when using GPUs and CUDA.

7.3.3 Pre-computation of matrix blocks.

In [Zas17], some of us discussed the case of H-matrix approximation for collocation matrices.
The computational effort to compute the individual system matrix entries in that case was
very low. Therefore, it was only considered to pre-compute the low-rank factors for the Rpkq-
matrices Rτˆσ P R|τ |ˆ|σ|, in order to avoid their re-calculation during each H-matrix vector
product.

In contrast, computing the entries in the Galerkin matrix for the boundary element method
is very expensive. In this case, it is extremely important to further pre-compute and store the
dense blocks Aτˆσ. This has been realized in hmglib. The evaluation of the matrix entries
is done in a batched way and the matrices are stored in GPU memory. To efficiently use
the available memory, we store the system matrices continuously in GPU memory, without
any padding. Pointers to the offsets of each matrix are passed to the batched matrix-vector
product provided by Magma.

7.3.4 Distributed-memory parallelization

We aim at a distributed-memory, i.e. multi-GPU, parallelization for two reasons. First, we
want to be able to solve large problems for which we need a high amount of (GPU) memory.
However, GPUs are usually rather limited in terms of the available memory. This is why we
need many GPUs (scale-up). Moreover, we want to be able to solve BEM problems as fast as
possible (speed-up).

To fulfill both requirements, we first tried a matrix-based parallelization by dividing the
large-scale system matrix into blocks of rows, on which we independently applied the H-matrix
approximation. However, this lead to a sub-optimal load balancing and sub-optimal speed-
up, since large admissible matrix blocks were cut into smaller pieces. The approach further
became prohibitive, as we ran into the situation that admissible blocks were divided into skinny
(i.e. wide but thin) sub-blocks. Therefore, in the worst case, one of the low-rank factors in the
ACA could become as large as the number of unknowns in the linear system times the required
rank, with a strong negative impact on scale-up. By introducing a full (row- and column-wise)
block-partitioning of the system matrix, we could remove this second issue. However, we did
still cut large admissible blocks into smaller pieces.

Work load distribution parallelization. We overcome most of the mentioned issues by using
a work load distribution parallelization instead of a matrix-based parallelization. In our work

7.3 Scalable parallel H-matrix approach for BEM 181

Figure 7.3: The distributed-memory parallelization of the H-matrix approach distributes simi-
lar sized subsets of the dense and low-rank matrix blocks to the different GPUs. The
yellow boxes represent hybrid compute nodes in an HPC system that are equipped
with a four-core CPU and two GPUs.

load distribution parallelization, we focus specifically on problem size scale-up and calculation
speed-up in the H-matrix construction. This choice is valid, since the H-matrix construction
completely dominates the solution process in BEM applications.

Our work load distribution parallelization first builds on all GPUs the identical global block
cluster tree and identifies admissible and non-admissible leafs. These leafs are put into two
work load lists being identical on each GPU. Note that no system matrix entry has been
evaluated at this stage. Then, each of the two work load lists is divided into p sub-lists, where
p is the number of GPU processors. The very computationally expensive construction and
storage of the low-rank or dense blocks in the sub-lists is done in a distributed way on each
GPU. Figure 7.3 illustrates our parallelization concept. At the top part of this figure, we show
the decomposed work load lists, which are then associated to one GPU. Our approach allows
to fully decouple the construction of the H-matrix. In practice, we use the Message Passing
Interface (MPI) and associate one CPU process / thread to one GPU. The only parallelization
information, which is required during the H-matrix construction phase, is the (CPU-)process
associated to each GPU. It is needed to distribute the sub-lists. The process number is provided
by MPI.

182 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

As part of our current parallelization strategy, we store an identical copy of the vector
involved in the H-matrix-vector product on each GPU. The H-matrix-vector product is applied
individually on each GPU. That is, it is only performed for those admissible and non-admissible
blocks that are available on the corresponding processor. To finalize the product, we use a
global parallel reduction (summation) provided by MPI. For improved performance, we rely
on a CUDA-aware MPI implementation [Kra13], such that we directly pass pointers to GPU
memory to the MPI call. Data transfers to and from the network adapter are handled by MPI.

Up to this point, we did not discuss how to partition the work load lists into sub-lists.
This has a strong impact on load balancing. In our current implementation, we stick to a
rather simplistic scheme. It relies on the assumption that the amount of time required for
a batched matrix-vector product of several dense matrices (or two matrix-vector products of
skinny matrices in the ACA case) is proportional to the sum over the number of matrix entries
of all matrices that are involved in the batched product. Concerning the dense matrix-vector
product work load list, we thus balance the storage size of the batched matrices on each GPU.
Similarly, we balance the storage size of the batched low-rank factors for the ACA work load
list, compare Figure 7.3.

Scalability and load balancing discussion. Independently computing the block cluster tree
on each GPU and further storing identical copies of the vector involved in the matrix-vector
product requires, with growing problem size, a growing fixed amount of memory. This has a
potential impact on the problem size scale-up on GPUs with a small amount of GPU memory.
We could partially fix this obstruction by moving the block cluster tree construction to CPU.
Nevertheless, our intention is to provide a solely GPU-based implementation. Therefore, we
do not use the CPU.

Note, also that the currently required global communication in the H-matrix-vector product
might limit the speed-up in the matrix-vector product. We accept this, since we right-now focus
on calculation speed-up in the H-matrix construction, as discussed before. Finally, the under-
lying assumption for our work load list partitioning strategy strongly depends on the applied
batched matrix-vector product implementation. Here, we see some room for improvements by
a more elaborated cost model.

7.4 Numerical results

In the following, we will first briefly discuss the model problem and the applied GPU-based
model BEM solver. This is followed by an overview of the used hard- and software and the
definition of two test cases. The first major study of this section is concerned with numerical
results that indicate convergence of the implemented method. The remaining part of this
section discusses the performance and scalability of the multi-GPU approach.

7.4.1 Model BEM solver

To test our extended version of the hmglib library in the context of boundary element methods,
we have implemented a GPU-based model BEM solver. It solves the model problem discussed
in Example 7.1, i.e. the Laplace problem reformulated by the single-layer potential ansatz and

7.4 Numerical results 183

resulting in the boundary integral equation (7.3). We stress here that this BEM solver is solely
built with the intention to have a test case for the hmglib library in the context of BEM. That
is, it is not supposed to compete with other BEM libraries.

Our model GPU BEM solver is based on a sequential in-house code. This in-house code gets
the boundary Γ by a parametric representation similar to iso-geometric analysis. It discretizes Γ
by a quadrangular mesh and introduces a finite-dimensional trial space with piecewise constant
ansatz functions. We identify basis functions with element centers. In the Galerkin matrix
assembly, higher-order quadrature and the Duffy trick [Duf82, SS97] are applied to get an
accurate approximation of the integrals. The resulting system of linear equations is solved by
a conjugate gradient (CG) solver.

In our GPU version of the CPU code, we re-use the existing sequential CPU code to build
the required data structures (mesh, element lists, . . .). This data is copied to GPU. Then, the
actual matrix assembly is done on GPU. To this end, we parallelize the fully decoupled node-
wise assembly operation by appropriate CUDA device functions that overwrite the abstract
matrix assembly class of hmglib. As e.g. discussed in [BC15], the complicated, memory-
intensive and node-wise sequential quadrature routines easily lead to a limited GPU utilization.
In fact, we had to limit the size of the so-called thread blocks, i.e. the number of threads executed
on a symmetric multiprocessor of a GPU, to 128 in order to be able to run the quadrature
routines. Typical choices for most other applications are 512 or 1024. The hand-written
GPU-based CG solver uses the multi-GPU parallel H-matrix-vector product. The solution of
the iterative solver is copied back to CPU, where its error is evaluated by the standard error
evaluation routines of the sequential CPU code.

All results of this work are calculated with the H-matrix parameters η “ 1.0 and Cleaf “ 32.
The stopping criterion of the CG solver is a relative residual of 10´8.

7.4.2 Hardware and software setup

To run and benchmark hmglib together with the model GPU BEM solver, we use the former
Top 1 HPC system Titan (27 Peta-FLOPS), located at the Oak Ridge National Lab, US. This
is a Cray XK7 cluster equipped with 18688 compute nodes, which are connected by a Gemini
interconnect. Each compute node contains a 16-core AMD Opteron processor, 32 GB of (CPU)
memory and a Nvidia Tesla K20X GPU (Kepler architecture) with 6 GB of GPU memory.

We use Titan’s default gcc compiler, Cray’s MPICH implementation and Titan’s (at time
of benchmarking) latest CUDA Toolkit 7.0 (including the corresponding Thrust and CUBLAS
libraries). In addition, we compile and use Magma 2.3.0 and OpenBLAS 0.2.20 (as dependency
of Magma). In all compilations, we use the standard optimization flag -O3. All GPU codes are
compiled for the best possible Compute Architecture 3.5. The version of hmglib that is used to
create the results in this work is identical to the commit 8b4a4ff of hmglib on Github [Zas18].

7.4.3 Test cases

To test our implementation, we first use the model geometry Ω :“ r0, 1s3, i.e. Γ is the surface
of the unit cube. As real-world test case, we further consider the geometry of a gearwheel with
the bounding box r´4, 4s ˆ r´4, 4s ˆ r´11.5, 9.1s, as shown in Figure 7.4. In both cases, the

184 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

Figure 7.4: As real-world test case, we solve a boundary integral equation on a complex
gearwheel geometry. The overlying mesh corresponds to a discretization with
N “ 296960 boundary elements.

right-hand side f in equation (7.3) is

fpxq :“ 4x1
2 ´ 3x2

2 ´ x3
2 .

Since the right-hand side is the trace of a harmonic function, this choice allows us to compare
the numerical solution against the exact solution Uexact of the underlying Laplace equation. In
particular, we compute the worst-case error

εphq :“ max
xPXeval

ˇ

ˇUexactpxq ´ S̃uhpxq
ˇ

ˇ

by evaluating the single-layer potential ansatz from equation (7.2) for the approximated solution
uh. Here, Xeval is a large set of fixed points in the interior of the domain Ω.

7.4.4 Convergence

In order to verify the correctness of our GPU BEM model implementation and of the distributed-
memory parallel H-matrix implementation, we first do a classical convergence study, both with
respect to the discretization, i.e. the number of boundary elements, and with respect to the
approximation by the H-matrix approach.

Cube geometry. We solve the above discussed model problem on the surface of the cube
geometry for a growing number N of boundary elements. In this first experiment, we fix the
approximation by the adaptive cross approximation to k “ 128. The convergence study is
done for N “ 1536, 6144, 24576, 98304, 393216. Note that we compute the first two results on 4
GPUs and the remaining results on 128 GPUs. Although some of the problems would already

7.4 Numerical results 185

Figure 7.5: Convergence study for the multi-GPU implementation with model problem on a
cube geometry. The discretization error (solid line) decays with an appropriate
algebraic rate while the error in the ACA (dashed line) converges up to exponentially
until it hits the discretization error.

fit in less GPUs (or even one GPU), we keep a higher number of GPUs to actually check the
convergence of the multi-GPU code.

Figure 7.5 shows the convergence results for this first test by the solid blue line. The corre-
sponding axes for this test are on the top and on the right-hand side. We observe an algebraic
error decay with a (measured) rate of 1.3. If Γ would be smooth, we could get a rate of 1.5.
However, since this is not the case, the observed rate perfectly fits our expectations.

We further check the convergence of the adaptive cross approximation. To this end, we fix
the number of boundary elements to N “ 393216 and gradually increase the number of terms
used in the ACA as k “ 24, 32, 48, 64, 96, 128, 160, 192. In this second test, we always use 128
GPUs. The results are depicted in Figure 7.5 as the dashed line. The error in the ACA decays
up to exponentially until it hits the discretization error for roughly k “ 128. Beyond that, it
stagnates with small fluctuations.

Gearwheel geometry. Next, we repeat our previous studies with the complex real-world ge-
ometry of the gearwheel seen in Figure 7.4. We again fix the low-rank approximation to k “ 128
and increase the number of boundary elements in accordance with N “ 18560, 74240, 296960,
1187840. The first two problem sizes are computed on 256 GPUs and the second two problem
sizes are computed on 1024 GPUs.

186 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

Figure 7.6: Our multi-GPU parallel BEM solver together with the hmglib library is also applied
to the very complex gearwheel geometry. Here it shows a similar discretization
error (solid line) and ACA approximation error (dashed line) as for the unit cube
geometry.

The results are given in Figure 7.6 by the solid line. It shows a measured algebraic rate of
roughly 1.2, which fits again our expectations since the gearwheel geometry is not smooth. For
the largest problem size, we get a slight degradation in this rate. This might be due to our
fixed stopping criterion of a relative residual of 10´8 in the CG solver and a potentially high
condition number of the corresponding Galerkin system matrix.

We also repeat the convergence study for ACA for fixed N “ 1187840 and growing k “

24, 32, 48, 64, 96, 128, 160, 192. As before, we observe an up to exponential convergence until
the discretization error is hit. Beyond that, there are again only small variations on the same
error level.

To summarize, our distributed-memory multi-GPU parallel model BEM code applied to-
gether with hmglib perfectly matches our convergence expectations. This holds for the model
geometry of a unit cube and for the very complex gearwheel geometry.

7.4.5 Performance and scalability

To assess the properties of our implementation, we performed a series of benchmarking and
scalability studies. All studies were carried out on Titan, cf. Section 7.4.2. Time measurements
in our distributed-memory multi-GPU parallelization are wall clock times for the slowest paral-
lel process, i.e. the slowest GPU. If not otherwise stated, these worst-case times were averaged

7.4 Numerical results 187

runtime
geometry N k p H-setup CG solver

[s] [s/iter.]
cube 1536 24 1 0.86 0.0080

6144 24 1 5.44 0.0147
24576 24 1 39.91 0.0350
98304 48 8 163.15 0.1504

393216 48 32 698.49 0.0914
1572864 48 128 1880.26 0.1918
393216 24 128 46.66 0.0335

32 128 101.01 0.0284
48 128 245.35 0.0288
64 128 342.47 0.0333
128 128 518.79 0.0342
160 128 555.77 0.0393

1572864 48 128 1832.61 0.1124
48 256 955.92 0.0858
48 512 543.12 0.0767
48 1024 338.80 0.0867

gearwheel 1187840 24 1024 497.41 0.0642
32 1024 509.11 0.0585
48 1024 534.10 0.0583
64 1024 684.75 0.0600
128 1024 864.29 0.0643
160 1024 877.60 0.0783

1187840 24 128 2726.23 0.0969
24 256 1486.17 0.0827
24 512 937.07 0.0633
24 1024 497.90 0.0616

Table 7.1: The above table collects runtime benchmarks done with hmglib and our model
GPU BEM solver on p GPUs. We are able to e.g. solve a BEM problem on a cube
geometry with about 1.5 million boundary elements on GPUs in less than 6 minutes
(5.7 minutes for the H-matrix setup, 20 seconds for the CG solver).

188 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

over five runs to reduce the impact of changing loads on the utilized HPC system. Timings for
all measurements are collected in Table 7.1.

Scale-up in problem size. We first discuss the scale-up in terms of problem size, exemplified
for the cube geometry. The corresponding timings are given in the first block of Table 7.1.
We are able to solve a problem with up to 24576 boundary elements and k “ 24 on a single
GPU. In this case, the setup time of the hierarchical matrix consumes about 40 seconds. A
single iteration of the CG solver requires in average 0.035 seconds with a total of about 100
iterations.

To further increase the problem size, we increased the number of GPUs by a distributed-
memory parallelization, cf. Table 7.1. Using our work load distribution parallelization, cf. Sec-
tion 7.3.4, we are able to treat the cube geometry test case with about 1.5 million boundary
elements on 128 GPUs for k “ 48. The H-matrix setup phase consumes about 31 minutes.
Once the setup has been computed, the system of linear equations can be solved with only 0.19
seconds per iteration and a total runtime of about 75 seconds. That is, we do the linear solve
with 1.5 million boundary elements in way less than one and a half minutes.

We also tried to further increase the problem size. However, we are not able to accomplish this
since the amount of memory consumed on a single GPU (due to our strategy of independently
carrying out the data structure setup on all GPUs) becomes too high for the 6 GB of GPU
RAM of the Tesla K20X GPUs. The use of a more recent GPU like the Tesla P100 with 16
GB of GPU RAM would of course improve the situation. This GPU would also achieve a much
higher performance in the H-matrix setup, since our model BEM code would run much faster
than on the rather old Tesla K20X cards. In the future, we also aim at combining a domain-
decomposition parallelization with the work load distribution parallelization as for example in
[Beb08, KMMZ18] to solve even much larger problem sizes.

Performance vs. accuracy. As discussed in Section 7.4.4, the increase in the number of terms
utilized in the adaptive cross approximation has an important impact on the accuracy of the
approximate solution. Therefore, we analyzed its impact on the performance for the cube
geometry and the gearwheel geometry test case. In the first test case, we fix the problem
size to about 400000 boundary elements and increase the number of terms k from 24 to up to
160. Note that the timings used in this paragraph correspond to a single test run instead of
five test runs. Table 7.1 collects the runtime results of this test case in the second row block.
From a theoretical point of view, we should expect a quadratic increase in the H-matrix setup
runtime with respect to k. In practice, this increase is visible in the H-matrix setup (including
the ACA approximation of the admissible blocks) for smaller k. However, for larger k, this
increase becomes smaller. We assume that this behavior is due to the batching of the linear
algebra operations involved in ACA. In fact, the larger the problem, the better it is possible
to hide GPU latencies. We observe a much smaller runtime increase in the CG solver.

We tried the same experiment for the real-world gearwheel geometry test case with a problem
size of about 1.2 million boundary elements with results given in the fourth row block of
Table 7.1. Here, no quadratic runtime increase is visible. Instead, runtime is increased sub-
linearly. In this test case, the runtime for the dense treatment of non-admissible matrix blocks
seems to dominate the runtime. To summarize, an increase in the number of ACA terms has

7.4 Numerical results 189

Figure 7.7: The parallel speed-up efficiency for H-matrix setup of the cube geometry test case
(solid red line) is above 67 percent on up to 1024 GPU (starting form 128 GPUs) and
still reaches above 50 percent on 2048 GPUs. Focussing on the pre-computation of
(dense) non-admissible blocks, we even achieve almost 80 percent parallel speed-up
efficiency.

only a rather small impact on the overall runtime of our implementation.

Speed-up efficiency One of the main goals of this work is the increase in performance for the
H-matrix setup by the use of more GPUs. To showcase the achieved efficiency, we perform a
parallel speed-up / strong scaling study for the cube and the gearwheel geometry. The results
for the cube geometry are given in Figure 7.7 and in the third row block of Table 7.1.

In Figure 7.7, we show the results of a parallel speed-up analysis for problem sizes N “ 393216
and N “ 1572864 with k “ 48. While the smaller problem size does not scale on large GPU
counts, we observe a decent result for the larger test case. Here, a relative parallel speed-up
efficiency of more than 67 percent is achieved starting from 128 GPUs and going to up to 1024
GPUs. The effective runtime of the H-matrix setup on 1024 GPUs is less than 5.7 minutes,
while the solution time by the CG solver is less than 20 seconds. In total, we therefore need
on 1024 GPUs less than 6 minutes for the H-matrix setup and solve for a problem size of more
than 1.5 million boundary elements.

When trying to further speed-up the problem, we still achieve an acceptable speed-up ef-

190 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

Figure 7.8: We analyze the load balancing in the speed-up study of the H-matrix setup (cube
geometry test case, N “ 1572864, k “ 48) with a special focus on the per-GPU
runtimes of the pre-computation of the non-admissible blocks (blue) and the per-
GPU runtimes of the approximation of the admissible blocks (red).

ficiency of above 50 percent on 2048 GPUs. In addition, we looked more closely in the con-
tribution to the scalability of the different work loads in the H-matrix setup. As shown in
Figure 7.7, the pre-computation of the (dense) non-admissible blocks scales much better than
the approximation of the admissible blocks by ACA. From Table 7.1, we can depict that the
strong scaling efficiency of the dense computations is in the range of 80 percent, even on 2048
GPUs. The scaling of the ACA work load is only a little bit more efficient than the overall
H-matrix setup phase. The overall setup phase is always less efficient than the dense and ACA
work loads, since the GPU-parallel data structure setup, i.e. the block cluster tree traversal, is
not parallelized in a distributed-memory manner, compare Section 7.3.4.

In Section 7.3.4, we also discussed the issue of load balancing. Effectively, we chose the
model assumption that a roughly equal amount of batched matrix entries that are applied
in a batched matrix-vector product will result in similar runtime performance. We check the
quality of this assumption by examining the distribution of computational runtime over all

7.4 Numerical results 191

Figure 7.9: Considering the real-world test case of a gearwheel geometry with N “ 1187804
and k “ 24, we observe a relative parallel speed-up efficiency of above 68 percent
going from 128 to 1024 GPUs. This result is almost identical to the much simpler
cube geometry test case.

GPUs for the dense matrix blocks and the ACA matrix approximations. The results of this
study for N “ 1572864, k “ 48 and p “ 1024, 2048 are shown in Figure 7.8 as histogram plots.
Qualitatively, the changes between 1024 and 2048 GPUs are only small, that is we only consider
p “ 1024. In practice, our model assumption does not yet lead to an optimal load balancing.
While a major part of the timings for the dense matrix operations (see the blue histogram on
the left-hand side in Figure 7.8) is nicely scattered around 5 seconds, we have some non-optimal
outliers of up to 15 seconds. Nevertheless, the dense operations have only a moderate influence
on the overall scalability due to their small maximum time. In contrast, the matrix block
approximations by ACA (see the red histogram on the left-hand side in Figure 7.8) last up to
more than 300 seconds. We especially observe the rather large portion of GPUs that only need
a very small amount of time. In the future, we aim at improving the multi-GPU load balancing
by techniques proposed e.g. in [Beb08, KMMZ18]. However, while these techniques work well
in the context of non-batched operations, we assume that their combination with batching will
still be sub-optimal on GPUs. Therefore, further research has to be carried out in order to
improve the load balancing.

We finally repeat the parallel speed-up efficiency study for the gearwheel geometry test case

192 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

with N “ 1187840 and k “ 24. The speed-up results are graphically displayed in Figure 7.9.
In this test case, the speed-up for the dense matrix work load and the ACA approximation
work load are well aligned to the overall H-matrix setup speed-ups. In total, we achieve above
68 percent of parallel speed-up efficiency going from 128 GPUs to 1024 GPUs. This is a decent
result. Moreover, as shown by Table 7.1 in the last row block, the runtime for the H-matrix
setup on 1024 is about 8.3 minutes, while the per-iteration runtime of the CG solver is about
0.06 seconds with a runtime of less than 29 seconds for the full CG solve. That is, a total of 8.8
minutes is needed to solve a BEM problem with 1187840 boundary elements on a real-world
geometry on 1024 (rather old) GPUs, recalling that the implemented GPU BEM solver is only
intended to be a model application for the underlying hmglib library.

7.5 Conclusions

In this work, we considered the distributed-memory parallel multi-GPU parallel solution of
boundary integral equations by the hierarchical matrix library hmglib. The main contribution
of this work was the extension and distributed-memory parallelization of hmglib, such that
Galerkin matrices from boundary element method discretizations given by arbitrary BEM
codes can be approximated in a multi-GPU parallel way. Our multi-GPU parallelization of
the H-matrix library uses a work load distribution parallelization. Numerical studies and
performance analysis were carried out with a model GPU BEM solver for piecewise constant
boundary elements, which is based on an existing in-house CPU solver. This model GPU BEM
solver was merely designed for a test of the hmglib library, however not with the intention
to compete with other BEM solvers in the field. Our two numerical test cases showed, both,
roughly 67 percent relative parallel speed-up efficiency going from 128 to 1024 GPUs on the
GPU cluster Titan. This is a decent speed-up result. A cube geometry test case with about
1.5 million boundary elements could be solved within less than 6 minutes (5.7 minutes for the
setup, 20 seconds for the CG solver) on 1024 GPUs. The real-world gearwheel geometry test
case with about 1.2 million unknowns could be solved within 8.8 minutes on 1024 GPUs.

As future work, we consider the combination of a domain decomposition parallelization with
our work load distribution parallelization. This new approach will introduce a distributed main
data structure. Thereby it will be possible to scale to to much larger problem sizes. This will
also hold for the CG solver. Moreover, we plan to introduce a further investigate load balancing
techniques (e.g. as in the non H-matrix work [DZSS17]). An especially apealing approach could
be the introduction of a model for the runtimes of the batched BLAS operations an the matrix
assembly quadrature routines.

Acknowledgements

This work is funded by the Swiss National Science Foundation (SNF) under project number
407540_167186. Furthermore, code development and benchmarking tasks in this research were
done on resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National
Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under
Contract No. DE-AC05-00OR22725. All funding and support is gratefully acknowledged.

7.5 Conclusions 193

References
[ALM`18] K. Akbudak, H. Ltaief, A. Mikhalev, A. Charara, and D. E. Keyes. Exploiting

data sparsity for large-scale matrix computations. Technical report, King Abdullah
University of Science and Technology, 2018.

[B1̈7] S. Börm. H2Lib, a library for hierarchical matrices. Online, 2017.
http://www.h2lib.org (last access: 2018/06/18).

[BC15] S. Börm and S. Christophersen. Approximation of BEM matrices using gpgpus.
CoRR, abs/1510.07244, 2015.

[Beb] M. Bebendorf. AHMED Another software library on hierarchical matrices for elliptic
differential equations. Online. https://github.com/xantares/ahmed (last access:
2018/06/18).

[Beb08] M. Bebendorf. Hierarchical Matrices. A Means to Efficiently Solve Elliptic Bound-
ary Value Problems, volume 63 of Lecture Notes in Computational Science and
Engineering. Springer, Berlin, 2008.

[BGH03] S. Börm, L. Grasedyck, and W. Hackbusch. Introduction to hierarchical matrices
with applications. Engineering analysis with boundary elements, 27(5):405–422,
2003.

[BK09] M. Bebendorf and S. Kunis. Recompression techniques for adaptive cross approx-
imation. Journal of Integral Equations and Applications, 21(3):331–357, 2009.

[Bör04] S. Börm. H2-matrices. Multilevel methods for the approximation of integral oper-
ators. Computing and Visualization in Science, 7(3):173–181, Oct 2004.

[BR03] M. Bebendorf and S. Rjasanow. Adaptive low-rank approximation of collocation
matrices. Computing, 70(1):1–24, 2003.

[BTLK18] W. H. Boukaram, G. Turkiyyah, H. Ltaief, and D. E. Keyes. Batched QR and
SVD algorithms on GPUs with applications in hierarchical matrix compression.
Parallel Computing, 74:19–33, 2018. Parallel Matrix Algorithms and Applications
(PMAA’16).

[CKL17] A. Charara, D. E. Keyes, and H. Ltaief. Batched triangular dense linear algebra
kernels for very small matrix sizes on gpus. Technical report, King Abdullah
University of Science and Technology, 2017.

[CKL18] A. Charara, D. E. Keyes, and H. Ltaief. Batched tile low-rank GEMM on GPUs.
Technical report, King Abdullah University of Science and Technology, 2018.

[DGH`14] J. Dongarra, M. Gates, A. Haidar, J. Kurzak, P. Luszczek, S. Tomov, and I. Ya-
mazaki. Accelerating numerical dense linear algebra calculations with GPUs. Nu-
merical Computations with GPUs, pages 1–26, 2014.

194 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

[DHK`18] J. Dölz, H. Harbrecht, S. Kurz, S. Schöps, and F. Wolf. A fast isogeometric BEM
for the three dimensional Laplace- and Helmholtz problems. Computer Methods in
Applied Mechanics and Engineering, 330:83–101, 2018.

[Duf82] M. G. Duffy. Quadrature over a pyramid or cube of integrands with a singularity
at a vertex. SIAM Journal on Numerical Analysis, 19(6):1260–1262, 1982.

[DZSS17] A. Derler, R. Zayer, H. Seidel, and M. Steinberger. Dynamic scheduling for efficient
hierarchical sparse matrix operations on the GPU. In W. D. Gropp, P. Beckman,
Z. Li, and F. J. Cazorla, editors, Proceedings of the International Conference on
Supercomputing, ICS 2017, Chicago, IL, USA, June 14-16, 2017, pages 7:1–7:10.
ACM, 2017.

[GKLB08] L. Grasedyck, R. Kriemann, and S. Le Borne. Parallel black box-LU precondition-
ing for elliptic boundary value problems. Computing and Visualization in Science,
11(4):273–291, 2008.

[GKW03] L. Gaul, M. Kögler, and M. Wagner. Boundary Element Methods for Engineers
and Scientists. Springer, Berlin, 2003.

[GLR`16] P. Ghysels, X. S. Li, F. Rouet, S. Williams, and A. Napov. An efficient multicore
implementation of a novel HSS-structured multifrontal solver using randomized
sampling. SIAM Journal on Scientific Computing, 38(5):358–384, 2016.

[GR97] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the
Laplace equation in three dimensions. Acta Numerica, 6:229–269, 1997.

[Hac15] W. Hackbusch. Hierarchical matrices: Algorithms and Analysis, volume 49 of
Springer series in computational mathematics. Springer, Berlin, 2015.

[Hac16] W. Hackbusch. Survey on the technique of hierarchical matrices. Vietnam Journal
of Mathematics, 44(1):71–101, 2016.

[Hal08] T. R. Halfhill. Parallel Processing with CUDA. Microprocessor Report, January
2008.

[HB02] W. Hackbusch and S. Börm. H2-matrix approximation of integral operators by
interpolation. Applied Numerical Mathematics, 43(1-2):129–143, 2002.

[HB10] J. Hoberock and N. Bell. Thrust: A parallel template library, 2010. Version 1.7.0.

[HDT`15] A. Haidar, T. Dong, S. Tomov, P. Luszczek, and J. Dongarra. Framework for
batched and GPU-resident factorization algorithms to block Householder trans-
formations. In ISC High Performance 2015, pages 31–47, Cham, 2015. Springer
International Publishing.

[HKS00] W. Hackbusch, B. Khoromskij, and S. A. Sauter. On H2-matrices. In Lectures
on Applied Mathematics: Proceedings of the Symposium Organized by the Sonder-
forschungsbereich 438 on the Occasion of Karl-Heinz Hoffmanns 60th Birthday,
Munich, June 30–July 1, 1999, pages 9–29, Berlin-Heidelberg, 2000. Springer.

7.5 Conclusions 195

[HN89] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Numerische Mathematik, 54(4):463–491, 1989.

[HR10] H. Harbrecht and M. Randrianarivony. From computer aided design to wavelet
BEM. Computing and Visualization in Science, 13(2):69–82, 2010.

[HW08] G. C. Hsiao and W. L. Wendland. Boundary Integral Equations, volume 164 of
Applied Mathematical Sciences. Springer, Berlin, 2008.

[KMMZ18] M. Kravcenko, L. Maly, M. Merta, and J. Zapletal. Parallel assembly of ACA
BEM matrices on Xeon Phi clusters. In R. Wyrzykowski, J. Dongarra, E. Deelman,
and K. Karczewski, editors, Parallel Processing and Applied Mathematics, pages
101–110, Cham, 2018. Springer International Publishing.

[Kra13] J. Kraus. An introduction to CUDA-aware MPI. Online, 2013. NVIDIA Developer
Blog.

[Kri05] R. Kriemann. Parallel H-matrix arithmetics on shared memory systems. Comput-
ing, 74(3):273–297, 2005.

[Kri13] R. Kriemann. H-LU factorization on many-core systems. Computing and Visual-
ization in Science, 16(3):105–117, 2013.

[Kri17] R. Kriemann. H-Libpro. Online, 2017. http://www.hlibpro.com (last access:
2018/06/18).

[LGS`09] C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha. Fast BVH
construction on GPUs. Computer Graphics Forum, 28(2):375–384, 2009.

[Mor66] G. M. Morton. A computer oriented geodetic data base and a new technique in
file sequencing. Technical Report Ottawa, Ontario, Canada, 1966.

[MZ18] M. Merta and J. Zapletal. A parallel library for boundary element discretization
of engineering problems. Mathematics and Computers in Simulation, 145:106–113,
2018.

[MZBF15] B. Marussig, J. Zechner, G. Beer, and T.-P. Fries. Fast isogeometric boundary
element method based on independent field approximation. Computer Methods in
Applied Mechanics and Engineering, 284:458–488, 2015.

[OYIY18] S. Ohshima, I. Yamazaki, A. Ida, and R. Yokota. Optimization of hierarchical
matrix computation on GPU. In R. Yokota and W. Wu, editors, Supercomputing
Frontiers, pages 274–292, Cham, 2018. Springer International Publishing.

[Pou] J. Poulson. DMHM - Distributed-Memory Hierarchical Matrices. Online. https://bit-
bucket.org/poulson/dmhm (last access: 2018/06/18).

[RLGN16] F.-H. Rouet, X. S. Li, P. Ghysels, and A. Napov. A distributed-memory package
for dense hierarchically semi-separable matrix computations using randomization.
ACM Transactions on Mathematical Software, 42(4):27:1–35, 2016.

196 7 Scalable H matrices for boundary intergral equations on multi-GPU clusters

[SBA`15] W. Śmigaj, T. Betcke, S. Arridge, J. Phillips, and M. Schweiger. Solving boundary
integral problems with BEM++. ACM Transactions on Mathematical Software,
41(2):6:1–40, 2015.

[SDC07] Z. Sheng, P. Dewilde, and S. Chandrasekaran. Algorithms to solve hierarchically
semi-separable systems. In D. Alpay and V. Vinnikov, editors, System Theory,
the Schur Algorithm and Multidimensional Analysis, pages 255–294, Basel, 2007.
Birkhäuser.

[SS97] S. A. Sauter and C. Schwab. Quadrature for hp-Galerkin BEM in R3. Numerische
Mathematik, 78(2):211–258, 1997.

[SS11] S. A. Sauter and C. Schwab. Boundary Element Methods. Springer Series in
Computational Mathematics. Springer, Berlin–Heidelberg, 2011.

[Ste08] O. Steinbach. Numerical Approximation Methods for Elliptic Boundary Value Prob-
lems. Springer, New York, 2008.

[VBD17] K. Vater, T. Betcke, and B. Dilba. Simple and efficient GPU parallelization of
existing H-matrix accelerated BEM code. CoRR, abs/1711.01897, 2017.

[YAI`18] I. Yamazaki, A. Abdelfattah, A. Ida, S. Ohshima, S. Tomov, R. Yokota, and J. Don-
garra. Performance of hierarchical-matrix bicgstab solver on GPU clusters. In Proc.
IEEE Int. Parallel and Distributed Processing Symp. (IPDPS), pages 930–939, May
2018.

[Zas17] P. Zaspel. Algorithmic patterns for H-matrices on many-core processors. CoRR,
abs/1708.09707, 2017.

[Zas18] P. Zaspel. hmglib - Simple H matrix library on GPU. Online, 2018.
https://github.com/zaspel/hmglib (last access: 2018/06/18).

	Introduction
	Background
	High-dimensional problems in practice
	Function approximation
	Suitable approximation spaces
	Hierarchical approximation
	Sparse tensor-product approximation
	Low-rank approximation
	Overview of achieved results

	Contributions in context of uncertainty quantification
	Ensemble Kalman filters for reliability estimation in perfusion inference
	Introduction
	Modeling radiological imaging and perfusion extraction
	Numerical approach by sequential data assimilation
	Numerical results
	Summary

	Subspace correction methods in algebraic multi-level frames
	Introduction
	Related work
	Multi-level frame systems and their iterative solution
	Algebraic multi-level frames
	Numerical results
	Conclusions

	On the algebraic construction of sparse multilevel approximations of elliptic tensor product problems
	Introduction
	Algebraic multilevel constructions
	Sparse algebraic tensor product approach
	Implementation
	Numerical results
	Conclusions

	Contributions in context of machine learning
	Boosting quantum machine learning models with multi-level combination technique: Pople diagrams revisited
	Introduction
	Computational Details
	Theory
	Results and discussion
	Conclusions
	Appendix: Derivation of the combination technique for quantum machine learning

	Algorithmic patterns for H matrices on many-core processors
	Introduction
	H matrix background
	Programming model for many-core parallel algorithms
	Many-core parallel algorithmic patterns for H matrices
	Results
	Summary
	Appendix: Batched bounding box computation

	A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters
	Introduction
	Mathematical background
	Scalable parallel H-matrix approach for BEM
	Numerical results
	Conclusions

