High Performance Computing

Statement

HPC clusters are indispensable for the solution of real-world large-scale engineering problems. Knowing potential scalability limitations of current standard processors, different many-core architectures have been proposed. They are a prototype for hardware in future HPC clusters. An important research objective is the introduction of new hardware-aware numerical methods that can profit from these new technologies. This also includes resilience considerations.


Related work

  • H. Harbrecht and P. Zaspel. A scalable H-matrix approach for the solution of boundary integral equations on multi-GPU clusters. Preprint 2018-11, Fachbereich Mathematik, Universität Basel, Switzerland, 2018. Also available as arXiv:1806.11558.
  • P. Zaspel. Algorithmic patterns for H matrices on many-core processors, accepted for publication in Journal of Scientific Computing, Springer, August 2018. Also available as Preprint 2017-12, Fachbereich Mathematik, Universität Basel, Switzerland, 2017 and as arXiv:1708.09707 preprint.
  • P. Zaspel. Analysis and parallelization strategies for Ruge-Stüben AMG on many-core processors, Preprint 2017-06, Fachbereich Mathematik, Universität Basel, Switzerland, 2017.
  • P. Zaspel. Parallel RBF Kernel-Based Stochastic Collocation for Large-Scale Random PDEs, PhD Thesis, Institute for Numerical Simulation, University of Bonn, Germany, Apr. 2015
  • EXAHD: An Exa-scalable Two-Level Sparse Grid Approach for Higher-Dimensional Problems in Plasma Physics and Beyond. In: Lopes L. et al. (eds) Euro-Par 2014: Parallel Processing Workshops. Euro-Par 2014. Lecture Notes in Computer Science, vol 8806. Springer, Cham, 2014.
  • P. Zaspel and M. Griebel. Solving incompressible two-phase flows on multi-GPU clusters. Computer & Fluids, 80(0):356 – 364, 2013.
  • P. Zaspel and M. Griebel. Massively parallel fluid simulations on amazon’s hpc cloud. In Network Cloud Computing and Applications (NCCA), 2011 First International Symposium on, pages 73 -78, Nov. 2011.
  • M. Griebel and P. Zaspel. A multi-GPU accelerated solver for the three-dimensional two-phase incompressible Navier-Stokes equations. Computer Science – Research and Development, 25(1-2):65-73, May 2010.
  • V. Heuveline, M. Schick, C. Webster, P. Zaspel. Uncertainty Quantification and High Performance Computing, Dagstuhl Reports, Vol. 6, Issue 9, pp. 59-73.

Software

  • hmglib: hierarchical matrices on graphic processing units (github)
  • MPLA: multi-GPU parallel library for dense iterative matrix solvers (github)
  • Multi-GPU support und uncertainty quantification for two-phase Navier Stokes (NaSt3DGPF)