Machine Learning in Fluid Mechanics

Computational Fluid Mechanics is a field in engineering, in which the computer is used to solve mathematical equations that describe the behavior of fluids like air or water. The just mentioned solution process is typically called “simulation”. The objective of this research topic is to investigate the application of Machine Learning models in fluid simulations. That is, the typically expensive simulation process is replaced by a Machine Learning problem.

This research project touches the following topics:

  • Modeling of fluids by the Navier-Stokes equations
  • use of an existing Navier Stokes fluid solver to generate training snapshots
  • further development of machine learning techniques for prediction of outcomes of fluid simulations
  • time-series prediction / quantity of interest prediction / spatial prediction

This is another hot topic, at least in the “simulation business”. Research-relevant questions are:

  • Can we find ML models that nicely predict bifurcation-like behavior?
  • Can we use ML models as sub-models (homogenization-like) in bigger models?

Here some links:

Wavelets as Features for Time Series ML

In this project, the idea would be to familiarize oneself further with the following concepts

  • time series data
  • Wavelet analysis to generate features
  • several types of machine learning models
    • kernel ridge regression
    • multilayer perceptron
    • radial basis function networks
    • transfer learning using some well-known image classifier

Application data can range from Quantum Chemistry over Finance to Health, hence is very broad.
The main objective would be to start with a “black box” approach, i.e. using some existing implementation of a continuous wavelet filter bank and then to develop a deeper understanding on how the choice of some parameters in the wavelet filter bank influences the prediction quality.

A first reference:

Radial Basis Function networks

This topic combines prior knowledge on kernel ridge regression with neural networks. The following content will be considered:

  • (deep) neural networks
  • kernel ridge regression
  • radial basis function networks

The objective would be to study the relationship of the predictive power of kernel ridge regression and radial basis function networks based on given data from quantum chemistry or other relevant science application.

A few first links:

Neural Network Compression by Low Rank Approximation

This is a very technical topic, which I would be interested to explore. It involves:

  • neural networks
  • low rank matrix approximation

Here the idea is to speed up neural network inference and maybe even training by approximating fully connected layers (i.e. matrices) by low-rank approximations of them.

WARNING: This is again a very mathematical topic.
References to be collected:

Fast Kernel Ridge Regression by matrix approximation techniques

The topic of this project is the efficient training of Machine Learning by Kernel Ridge Regression.

Relevant content will be:

  • Kernel Ridge Regression
  • iterative solvers for linear systems
  • matrix approximation techniques:
    • low rank approximation (SVD, ACA, …)
    • Askit
    • Hierarchical Matrices

Application data should be large-scale and science-related. Maybe the first starting point would be data from quantum chemistry that I have access to.
The beauty of this project would be to further develop and analyze the impact of non-exact solvers for linear systems on the quality of the prediction of Kernel Ridge Regression. This is highly research relevant.

WARNING: Some flavor of this topic (e.g. hierarchical matrices) requires a profound mathematical background.

Some first links:

New professors and lecturers at Jacobs University

They teach and do research in different subject areas and come from different countries. All of them share a very similar motivation however: they want to teach and do research at an international, English-medium university, with students from over 100 nations and small learning groups. The team at Jacobs University Bremen is strengthened by a whole series of professors and university lecturers.

Find the full press release here.